浏览全部资源
扫码关注微信
重庆邮电大学 理学院, 重庆 400065
[ "相国涛(1988-),男,黑龙江佳木斯人,博士,副教授,2016年于中国科学院大学获得博士学位,主要从事稀土上转换发光材料的研究。 E-mail: xianggt@cqupt.edu.cn" ]
[ "常瑛(1988-),女,陕西延安人,博士,讲师,2019年于西北工业大学获得博士学位,主要从事材料光学性质及理论计算的研究。 E-mail: changying@cqupt.edu.cn" ]
纸质出版日期:2023-10-05,
收稿日期:2023-07-25,
修回日期:2023-08-03,
移动端阅览
相国涛,丁永希,张羽等.具有光热转换能力的近红外光学测温材料BaY2O4∶Nd3+[J].发光学报,2023,44(10):1779-1785.
XIANG Guotao,DING Yongxi,ZHANG Yu,et al.Near Infrared Optical Thermometry Along with Photothermal Conversion Ability Realized in BaY2O4∶Nd3+[J].Chinese Journal of Luminescence,2023,44(10):1779-1785.
相国涛,丁永希,张羽等.具有光热转换能力的近红外光学测温材料BaY2O4∶Nd3+[J].发光学报,2023,44(10):1779-1785. DOI: 10.37188/CJL.20230172.
XIANG Guotao,DING Yongxi,ZHANG Yu,et al.Near Infrared Optical Thermometry Along with Photothermal Conversion Ability Realized in BaY2O4∶Nd3+[J].Chinese Journal of Luminescence,2023,44(10):1779-1785. DOI: 10.37188/CJL.20230172.
光热治疗亟需一种准确、高效、分辨率高且适用于深层生物组织的测温手段以辅助其治疗过程。本文以高温固相法合成了BaY
2
O
4
∶Nd
3+
材料,并基于Nd
3+
:
4
F
3/2
的Stark劈裂能级实现了较为精准的光学测温。数据表明,其测温的绝对灵敏度、相对灵敏度及分辨率的最佳值可分别达到0.09%·K
-1
、0.69%·K
-1
和0.05 K,优于大多数同类型温度计的相应数值。与此同时,因该光学温度计的激发和发射波长均位于生物窗口之内,使其在生物组织中的穿透深度可达到8 mm。另外,该材料还具有一定的光热转换能力。上述结果表明, Nd
3+
单掺的BaY
2
O
4
在深层组织的光热治疗方面具备一定的应用潜力。
Photothermal therapy (PTT) is in dire need of an accurate, efficient and high-resolution thermometer working in the deep tissues to assist its treatment process. In this paper, the high temperature solid state method is employed to synthesize the BaY
2
O
4
∶Nd
3+
powder, in which the thermally coupled Stark sublevels of Nd
3+
:
4
F
3/2
are utilized to measure the temperature based on the fluorescence intensity ratio (FIR) technology. The optimal value of its absolute sensitivity, relative sensitivity and temperature resolution is 0.09%·K
-1
, 0.69%·K
-1
and 0.05 K, which are superior to majority of the same type thermometers. Moreover, the penetration depth of the present sample in the biological tissues can be reached to 8 mm, benefiting from the fact that its excitation and emission wavelength are all located in the biological windows. Beyond that, the sample owns photothermal conversion ability under the irradiation of 808 nm wavelength. All the findings show the potential of Nd
3+
single-doped BaY
2
O
4
in deep-tissue PTT.
稀土离子光热治疗光学测温光热转换BaY2O4∶Nd3+
rare earthrare earthphotothermal therapyoptical thermometryphotothermal conversionBaY2O4∶Nd3+
LI X S, LOVELL J F, YOON J, et al. Clinical development and potential of photothermal and photodynamic therapies for cancer [J]. Nat. Rev. Clin. Oncol., 2020, 17(11): 657-674. doi: 10.1038/s41571-020-0410-2http://dx.doi.org/10.1038/s41571-020-0410-2
GAO G, SUN X B, LIANG G L. Nanoagent-promoted mild-temperature photothermal therapy for cancer treatment [J]. Adv. Funct. Mater., 2021, 31(25): 2100738. doi: 10.1002/adfm.202100738http://dx.doi.org/10.1002/adfm.202100738
WEI W F, ZHANG X Y, ZHANG S, et al. Biomedical and bioactive engineered nanomaterials for targeted tumor photothermal therapy: a review [J]. Mater. Sci. Eng. C, 2019, 104: 109891. doi: 10.1016/j.msec.2019.109891http://dx.doi.org/10.1016/j.msec.2019.109891
LIU H J, WANG M M, HU X X, et al. Enhanced photothermal therapy through the in situ activation of a temperature and redox dual-sensitive nanoreservoir of triptolide [J]. Small, 2020, 16(38): 2003398. doi: 10.1002/smll.202003398http://dx.doi.org/10.1002/smll.202003398
WANG Y F, DU W, ZHANG T, et al. A self-evaluating photothermal therapeutic nanoparticle [J]. ACS Nano, 2020, 14(8): 9585-9593. doi: 10.1021/acsnano.9b10144http://dx.doi.org/10.1021/acsnano.9b10144
CAO J K, CHEN W P, XU D K, et al. Wide-range thermometry based on green up-conversion of Yb3+/Er3+ co-doped KLu2F7 transparent bulk oxyfluoride glass ceramics [J]. J. Lumin., 2018, 194: 219-224. doi: 10.1016/j.jlumin.2017.10.020http://dx.doi.org/10.1016/j.jlumin.2017.10.020
RUIZ D, DEL ROSAL B, ACEBRÓN M, et al. Ag/Ag2S nanocrystals for high sensitivity near-infrared luminescence nanothermometry [J]. Adv. Funct. Mater., 2017, 27(6): 1604629. doi: 10.1002/adfm.201604629http://dx.doi.org/10.1002/adfm.201604629
LIU S F, CUI J, JIA J J, et al. High sensitive Ln3+/Tm3+/Yb3+ (Ln3+= Ho3+, Er3+) tri-doped Ba3Y4O9 upconverting optical thermometric materials based on diverse thermal response from non-thermally coupled energy levels [J]. Ceram. Int., 2019, 45(1): 1-10. doi: 10.1016/j.ceramint.2018.09.162http://dx.doi.org/10.1016/j.ceramint.2018.09.162
XIANG G T, LIU X T, XIA Q, et al. Deep-tissue temperature sensing realized in BaY2O4∶Yb3+/Er3+ with ultrahigh sensitivity and extremely intense red upconversion luminescence [J]. Inorg. Chem., 2020, 59(15): 11054-11060. doi: 10.1021/acs.inorgchem.0c01543http://dx.doi.org/10.1021/acs.inorgchem.0c01543
JI Y, XU W, DING N, et al. Huge upconversion luminescence enhancement by a cascade optical field modulation strategy facilitating selective multispectral narrow-band near-infrared photodetection [J]. Light Sci. Appl., 2020, 9(1): 184. doi: 10.1038/s41377-020-00418-0http://dx.doi.org/10.1038/s41377-020-00418-0
SHOU K Q, QU C R, SUN Y, et al. Multifunctional biomedical imaging in physiological and pathological conditions using a NIR-II probe [J]. Adv. Funct. Mater., 2017, 27(23): 1700995. doi: 10.1002/adfm.201700995http://dx.doi.org/10.1002/adfm.201700995
ZHAN Q Q, QIAN J, LIANG H J, et al. Using 915 nm laser excited Tm3+/Er3+/Ho3+-doped NaYbF4 upconversion nanoparticles for in vitro and deeper in vivo bioimaging without overheating irradiation [J]. ACS Nano, 2011, 5(5): 3744-3757. doi: 10.1021/nn200110jhttp://dx.doi.org/10.1021/nn200110j
XIANG G T, YANG M L, LIU Z, et al. Near-infrared-to-near-infrared optical thermometer BaY2O4∶Yb3+/Nd3+ assembled with photothermal conversion performance [J]. Inorg. Chem., 2022, 61(13): 5425-5432. doi: 10.1021/acs.inorgchem.2c00432http://dx.doi.org/10.1021/acs.inorgchem.2c00432
XIANG G T, YANG M L, XIA Q, et al. Ultrasensitive optical thermometer based on abnormal thermal quenching Stark transitions operating beyond 1 500 nm [J]. J. Am. Ceram. Soc., 2021, 104(11): 5784-5793. doi: 10.1111/jace.17981http://dx.doi.org/10.1111/jace.17981
WAWRZYNCZYK D, BEDNARKIEWICZ A, NYK M, et al. Neodymium (III) doped fluoride nanoparticles as non-contact optical temperature sensors [J]. Nanoscale, 2012, 4(22): 6959-6961. doi: 10.1039/c2nr32203jhttp://dx.doi.org/10.1039/c2nr32203j
KOLESNIKOV I E, KALINICHEV A A, KUROCHKIN M A, et al. YVO4∶Nd3+ nanophosphors as NIR-to-NIR thermal sensors in wide temperature range [J]. Sci. Rep., 2017, 7(1): 18002. doi: 10.1038/s41598-017-18295-whttp://dx.doi.org/10.1038/s41598-017-18295-w
QUINTANILLA M, ZHANG Y, LIZ-MARZÁN L M. Subtissue plasmonic heating monitored with CaF2∶Nd3+,Y3+ nanothermometers in the second biological window [J]. Chem. Mater., 2018, 30(8): 2819-2828. doi: 10.1021/acs.chemmater.8b00806http://dx.doi.org/10.1021/acs.chemmater.8b00806
ROCHA U, SILVA C JDA, SILVA W F, et al. Subtissue thermal sensing based on neodymium-doped LaF3 nanoparticles [J]. ACS Nano, 2013, 7(2): 1188-1199. doi: 10.1021/nn304373qhttp://dx.doi.org/10.1021/nn304373q
BENAYAS A, DEL ROSAL B, PÉREZ-DELGADO A, et al. Nd∶YAG near-infrared luminescent nanothermometers [J]. Adv. Opt. Mater., 2015, 3(5): 687-694. doi: 10.1002/adom.201400484http://dx.doi.org/10.1002/adom.201400484
0
浏览量
236
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构