浏览全部资源
扫码关注微信
1.河南大学 未来技术学院, 光伏材料省重点实验室, 河南 开封 475001
2.河南大学 拓扑功能材料研究中心, 河南 开封 475001
[ "赵梦真 (1997-),女,河南洛阳人,硕士,2023年于河南大学获得硕士学位,主要从事金属卤化物发光材料的合成和表征研究。" ]
[ "李超 (1990-),男,河南邓州人,博士, 副研究员,2019年于陕西师范大学获得博士学位, 主要从事固体无机材料、照明显示发光材料以及新型光电材料的基础与应用研究。" ]
收稿日期:2023-05-12,
修回日期:2023-05-29,
纸质出版日期:2023-11-05
移动端阅览
赵梦真,李超,张凤等.Eu3+掺杂诱导CsAgCl2相变及其光学温度传感性质[J].发光学报,2023,44(11):1950-1957.
ZHAO Mengzhen,LI Chao,ZHANG Feng,et al.Eu3+ Doping Induced Phase Transition in CsAgCl2 and Its Optical Temperature Sensing Properties[J].Chinese Journal of Luminescence,2023,44(11):1950-1957.
赵梦真,李超,张凤等.Eu3+掺杂诱导CsAgCl2相变及其光学温度传感性质[J].发光学报,2023,44(11):1950-1957. DOI: 10.37188/CJL.20230129.
ZHAO Mengzhen,LI Chao,ZHANG Feng,et al.Eu3+ Doping Induced Phase Transition in CsAgCl2 and Its Optical Temperature Sensing Properties[J].Chinese Journal of Luminescence,2023,44(11):1950-1957. DOI: 10.37188/CJL.20230129.
相变是调节材料性能的一种有效方法,在介电、光电、光致发光等领域有着广泛的应用。本文采用水热法合成未知相CsAgCl
2
,并通过升温和Eu
3+
掺杂将CsAgCl
2
从未知相转变为正交相。制备的Eu
3+
掺杂的CsAgCl
2
具有较高的光学温度灵敏度,在荧光强度模式和荧光寿命模式下的最大相对灵敏度分别为3.63%·K
-1
和3.20%·K
-1
。结果表明,CsAgCl
2
是一种很有前途的高灵敏度光学温度传感材料。
Phase transition is an effective way to regulate performance of materials and has been wildly applied in dielectric, photo-electricity and photoluminescence fields. Here, we report the hydrothermal synthesis of unknown phase CsAgCl
2
and the phase transition of CsAgCl
2
from unknown phase to orthogonal phase
via
annealing and Eu
3+
doping strategies. The as-prepared Eu
3+
doping CsAgCl
2
exhibits high optical temperature sensitivities with the maximum relative sensitivity values of 3.63%·K
-1
and 3.20%·K
-1
for emission intensity mode and decay lifetime mode, respectively. These results indicate that CsAgCl
2
is a promising candidate to be used as a high-sensitive optical temperature sensing material.
ZHANG Q , YIN Y D . All-inorganic metal halide perovskite nanocrystals: opportunities and challenges [J]. ACS Cent. Sci. , 2018 , 4 ( 6 ): 668 - 679 . doi: 10.1021/acscentsci.8b00201 http://dx.doi.org/10.1021/acscentsci.8b00201
FAKHARUDDIN A , GANGISHETTY M K , ABDI-JALEBI M , et al . Perovskite light-emitting diodes [J]. Nat. Electron. , 2022 , 5 ( 4 ): 203 - 216 . doi: 10.1038/s41928-022-00745-7 http://dx.doi.org/10.1038/s41928-022-00745-7
ZHANG J R , HODES G , JIN Z W , et al . All-inorganic CsPb X 3 perovskite solar cells: progress and prospects [J]. Angew. Chem. Int. Ed. , 2019 , 58 ( 44 ): 15596 - 15618 . doi: 10.1002/anie.201901081 http://dx.doi.org/10.1002/anie.201901081
CAO F R , LI L . Progress of lead-free halide perovskites: from material synthesis to photodetector application [J]. Adv. Funct. Mater. , 2021 , 31 ( 11 ): 2008275 . doi: 10.1002/adfm.202008275 http://dx.doi.org/10.1002/adfm.202008275
XIE K H , WEI S J , ALHADHRAMI A , et al . Synthesis of CsPbBr 3 /CsPb 2 Br 5 @silica yolk-shell composite microspheres: precisely controllable structure and improved catalytic activity for dye degradation [J]. Adv. Compos. Hybrid Mater. , 2022 , 5 ( 2 ): 1423 - 1432 . doi: 10.1007/s42114-022-00520-4 http://dx.doi.org/10.1007/s42114-022-00520-4
LUO J J , WANG X M , LI S R , et al . Efficient and stable emission of warm-white light from lead-free halide double perovskites [J]. Nature , 2018 , 563 ( 7732 ): 541 - 545 . doi: 10.1038/s41586-018-0691-0 http://dx.doi.org/10.1038/s41586-018-0691-0
YAKUNIN S , BENIN B M , SHYNKARENKO Y , et al . High-resolution remote thermometry and thermography using luminescent low-dimensional tin-halide perovskites [J]. Nat. Mater. , 2019 , 18 ( 8 ): 846 - 852 . doi: 10.1038/s41563-019-0416-2 http://dx.doi.org/10.1038/s41563-019-0416-2
苏彬彬 , 夏志国 . 新兴零维金属卤化物的光致发光与应用研究进展 [J]. 发光学报 , 2021 , 42 ( 6 ): 733 - 754 . doi: 10.37188/CJL.20210088 http://dx.doi.org/10.37188/CJL.20210088
SU B B , XIA Z G . Research progresses of photoluminescence and application for emerging zero-dimensional metal halides luminescence materials [J]. Chin. J. Lumin. , 2021 , 42 ( 6 ): 733 - 754 . (in Chinese) . doi: 10.37188/CJL.20210088 http://dx.doi.org/10.37188/CJL.20210088
ZHANG Z X , ZHAO R T , TENG S Y , et al . Color tunable self-trapped emissions from lead-free all inorganic IA-IB bimetallic halides Cs-Ag- X ( X = Cl, Br, I) [J]. Small , 2020 , 16 ( 44 ): 2004272 . doi: 10.1002/smll.202004272 http://dx.doi.org/10.1002/smll.202004272
WANG Q L , SOUTHERLAND H , LI J R , et al . Crystal-to-crystal transformation of magnets based on heptacyanomolybdate(III) involving dramatic changes in coordination mode and ordering temperature [J]. Angew. Chem. , 2012 , 124 ( 37 ): 9455 - 9458 . doi: 10.1002/ange.201203309 http://dx.doi.org/10.1002/ange.201203309
HU C H , ENGLERT U . Space filling versus symmetry: two consecutive crystal-to-crystal phase transitions in a 2D network [J]. Angew. Chem. Int. Ed. , 2006 , 45 ( 21 ): 3457 - 3459 . doi: 10.1002/anie.200504460 http://dx.doi.org/10.1002/anie.200504460
AVENDANO C , ZHANG Z Y , OTA A , et al . Dramatically different conductivity properties of metal-organic framework polymorphs of Tl(TCNQ): an unexpected room-temperature crystal-to-crystal phase transition [J]. Angew. Chem. Int. Ed. , 2011 , 50 ( 29 ): 6543 - 6547 . doi: 10.1002/anie.201100372 http://dx.doi.org/10.1002/anie.201100372
LIU Y J , LI A S , XU S P , et al . Reversible luminescent switching in an organic cocrystal: multi-stimuli-induced crystal-to-crystal phase transformation [J]. Angew. Chem. Int. Ed. , 2020 , 59 ( 35 ): 15098 - 15103 . doi: 10.1002/anie.202002220 http://dx.doi.org/10.1002/anie.202002220
LV X H , LIAO W Q , LI P F , et al . Dielectric and photoluminescence properties of a layered perovskite-type organic-inorganic hybrid phase transition compound: NH 3 (CH 2 ) 5 NH 3 MnCl 4 [J]. J. Mater. Chem. C , 2016 , 4 ( 9 ): 1881 - 1885 . doi: 10.1039/c5tc04114g http://dx.doi.org/10.1039/c5tc04114g
HAN D C , TAN Y H , WU W C , et al . High-temperature phase transition containing switchable dielectric behavior, long fluorescence lifetime, and distinct photoluminescence changes in a 2D hybrid CuBr 4 perovskite [J]. Inorg. Chem. , 2021 , 60 ( 24 ): 18918 - 18923 . doi: 10.1021/acs.inorgchem.1c02720 http://dx.doi.org/10.1021/acs.inorgchem.1c02720
ŠIMĖNAS M , BALČIU̅NAS S , GA̧ GOR A , et al . Mixology of MA 1- x EA x PbI 3 hybrid perovskites: phase transitions, cation dynamics, and photoluminescence [J]. Chem. Mater. , 2022 , 34 ( 22 ): 10104 - 10112 . doi: 10.1021/acs.chemmater.2c02807 http://dx.doi.org/10.1021/acs.chemmater.2c02807
SHI C , HAN X B , ZHANG W . Structural phase transition-associated dielectric transition and ferroelectricity in coordination compounds [J]. Coord. Chem. Rev. , 2019 , 378 : 561 - 576 . doi: 10.1016/j.ccr.2017.09.020 http://dx.doi.org/10.1016/j.ccr.2017.09.020
MA J P , CHEN J K , YIN J , et al . Doping induces structural phase transitions in all-inorganic lead halide perovskite nanocrystals [J]. ACS Mater. Lett. , 2020 , 2 ( 4 ): 367 - 375 . doi: 10.1021/acsmaterialslett.0c00059 http://dx.doi.org/10.1021/acsmaterialslett.0c00059
YAN Z P , LI N N , WANG L Y , et al . Pressure-induced two-color photoluminescence and phase transition of two-dimensional layered MnCl 2 [J]. J. Phys. Chem. C , 2020 , 124 ( 42 ): 23317 - 23323 . doi: 10.1021/acs.jpcc.0c06598 http://dx.doi.org/10.1021/acs.jpcc.0c06598
RAHIMZADEGAN A , ARSLAN D , SURYADHARMA R N S , et al . Disorder-induced phase transitions in the transmission of dielectric metasurfaces [J]. Phys. Rev. Lett. , 2019 , 122 ( 1 ): 015702 . doi: 10.1103/physrevlett.122.015702 http://dx.doi.org/10.1103/physrevlett.122.015702
MA J P , YIN J , CHEN Y M , et al . Defect-triggered phase transition in cesium lead halide perovskite nanocrystals [J]. ACS Mater. Lett. , 2019 , 1 ( 1 ): 185 - 191 . doi: 10.1021/acsmaterialslett.9b00128 http://dx.doi.org/10.1021/acsmaterialslett.9b00128
DOBROVOLSKY A , MERDASA A , UNGER E L , et al . Defect-induced local variation of crystal phase transition temperature in metal-halide perovskites [J]. Nat. Commun. , 2017 , 8 ( 1 ): 34 . doi: 10.1038/s41467-017-00058-w http://dx.doi.org/10.1038/s41467-017-00058-w
GAEBELL H C , MEYER G , HOPPE R . Über Chloroargentate(I): CsAgCl 2 und schwarzes CsAgCl 2+ x [J]. Z. Anorg. Allg. Chem. , 1983 , 497 ( 2 ): 199 - 205 . doi: 10.1002/zaac.19834970219 http://dx.doi.org/10.1002/zaac.19834970219
HULL S , BERASTEGUI P . Crystal structures and ionic conductivities of ternary derivatives of the silver and copper monohalides-II: ordered phases within the (Ag X ) x ( MX ) 1- x and (Cu X ) x ( MX ) 1- x ( M = K, Rb and Cs; X = Cl, Br and I) systems [J]. J. Solid State Chem. , 2004 , 177 ( 9 ): 3156 - 3173 . doi: 10.1016/j.jssc.2004.05.004 http://dx.doi.org/10.1016/j.jssc.2004.05.004
WU D F , ZHOU J E , KANG W , et al . Ultrastable lead-free CsAgCl 2 perovskite microcrystals for photocatalytic CO 2 reduction [J]. J. Phys. Chem. Lett. , 2021 , 12 ( 21 ): 5110 - 5114 . doi: 10.1021/acs.jpclett.1c01128 http://dx.doi.org/10.1021/acs.jpclett.1c01128
TIAN T F , XIONG X H , ZHAO Y X , et al . Ultra-wideband warm white light emission from self-trapped excitons in CsAgCl 2 [J]. J. Alloys Compd. , 2022 , 895 : 162632 . doi: 10.1016/j.jallcom.2021.162632 http://dx.doi.org/10.1016/j.jallcom.2021.162632
ZHAO X X , SUN J H , GUO Z Y , et al . One-step hydrothermal synthesis of monoclinic vanadium dioxide nanoparticles with low phase transition temperature [J]. Chem. Eng. J. , 2022 , 446 : 137308 . doi: 10.1016/j.cej.2022.137308 http://dx.doi.org/10.1016/j.cej.2022.137308
JIANG Z L , TIAN S L , LAI S Q , et al . Capturing phase evolution during solvothermal synthesis of metastable Cu 4 O 3 [J]. Chem. Mater. , 2016 , 28 ( 9 ): 3080 - 3089 . doi: 10.1021/acs.chemmater.6b00421 http://dx.doi.org/10.1021/acs.chemmater.6b00421
QIAN L X , YAO L , LIU Y P , et al . Hydrothermal synthesis and structures of unknown intermediate phase Zn(HCO 3 ) 2 ∙H 2 O nanoflakes and final ZnO nanorods [J]. Inorg. Chem. , 2022 , 61 ( 5 ): 2669 - 2678 . doi: 10.1021/acs.inorgchem.1c03810 http://dx.doi.org/10.1021/acs.inorgchem.1c03810
KESHAVARZ M , OTTESEN M , WIEDMANN S , et al . Tracking structural phase transitions in lead-halide perovskites by means of thermal expansion [J]. Adv. Mater. , 2019 , 31 ( 24 ): 1900521 . doi: 10.1002/adma.201900521 http://dx.doi.org/10.1002/adma.201900521
LIAN L Y , ZHENG M Y , ZHANG P , et al . Photophysics in Cs 3 Cu 2 X 5 ( X = Cl, Br, or I): highly luminescent self-trapped excitons from local structure symmetrization [J]. Chem. Mater. , 2020 , 32 ( 8 ): 3462 - 3468 . doi: 10.1021/acs.chemmater.9b05321 http://dx.doi.org/10.1021/acs.chemmater.9b05321
CHEN X , QIU Z J , XING H L , et al . Sulfur-doping/leaching induced structural transformation toward boosting electrocatalytic water splitting [J]. Appl. Catal. B: Environ. , 2022 , 305 : 121030 . doi: 10.1016/j.apcatb.2021.121030 http://dx.doi.org/10.1016/j.apcatb.2021.121030
SHE S X , ZHU Y L , WU X H , et al . Realizing high and stable electrocatalytic oxygen evolution for iron-based perovskites by co-doping-induced structural and electronic modulation [J]. Adv. Funct. Mater. , 2022 , 32 ( 15 ): 2111091 . doi: 10.1002/adfm.202111091 http://dx.doi.org/10.1002/adfm.202111091
KOCHAT V , APTE A , HACHTEL J A , et al . Re doping in 2D transition metal dichalcogenides as a new route to tailor structural phases and induced magnetism [J]. Adv. Mater. , 2017 , 29 ( 43 ): 1703754 . doi: 10.1002/adma.201770315 http://dx.doi.org/10.1002/adma.201770315
LI S F , YANG G , YUAN H L , et al . Photoluminescence performance of Tb 3+ /Eu 3+ doped Bi 2 Sn 2 O 7 phosphors [J]. Chem. Phys. Lett. , 2022 , 786 : 139211 . doi: 10.1016/j.cplett.2021.139211 http://dx.doi.org/10.1016/j.cplett.2021.139211
YANG J , QUAN Z W , KONG D Y , et al . Y 2 O 3 ∶Eu 3+ microspheres: solvothermal synthesis and luminescence properties [J]. Cryst. Growth Des. , 2007 , 7 ( 4 ): 730 - 735 . doi: 10.1021/cg060717j http://dx.doi.org/10.1021/cg060717j
CHI F F , JIANG B , ZHAO Z M , et al . Multimodal temperature sensing using Zn 2 GeO 4 ∶Mn 2+ phosphor as highly sensitive luminescent thermometer [J]. Sens. Actuators B: Chem. , 2019 , 296 : 126640 . doi: 10.1016/j.snb.2019.126640 http://dx.doi.org/10.1016/j.snb.2019.126640
HUANG S X , ZHANG F , WU Z Y , et al . A highly sensitive ratiometric optical cryothermometer using a new broadband emitting trivalent bismuth singly activated Ba 2 ZnSc(BO 3 ) 3 microcrystal [J]. Dalton Trans. , 2021 , 50 ( 40 ): 14342 - 14351 . doi: 10.1039/d1dt02265b http://dx.doi.org/10.1039/d1dt02265b
0
浏览量
116
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构