浏览全部资源
扫码关注微信
北京工业大学 材料与制造学部, 北京 100124
[ "张嘉倍(1998-),女,陕西榆林人,硕士研究生,2020年于北京化工大学获得学士学位,主要从事新型卤化物闪烁的制备与性能表征相关研究。" ]
[ "肖家文(1988-),男,江西吉安人,博士,校聘教授,2015年于北京大学获得博士学位,主要从事卤化物闪烁体及X射线成像方面的研究。" ]
纸质出版日期:2023-10-05,
收稿日期:2023-04-25,
修回日期:2023-05-15,
移动端阅览
张嘉倍,王超,肖家文等.有机⁃无机杂化铜(Ⅰ)基卤化物闪烁体研究进展[J].发光学报,2023,44(10):1705-1720.
ZHANG Jiabei,WANG Chao,XIAO Jiawen,et al.Research Progress on Organic-inorganic Hybrid Cuprous Halide Scintillators[J].Chinese Journal of Luminescence,2023,44(10):1705-1720.
张嘉倍,王超,肖家文等.有机⁃无机杂化铜(Ⅰ)基卤化物闪烁体研究进展[J].发光学报,2023,44(10):1705-1720. DOI: 10.37188/CJL.20230108.
ZHANG Jiabei,WANG Chao,XIAO Jiawen,et al.Research Progress on Organic-inorganic Hybrid Cuprous Halide Scintillators[J].Chinese Journal of Luminescence,2023,44(10):1705-1720. DOI: 10.37188/CJL.20230108.
近年来,有机⁃无机杂化金属卤化物材料由于其优异的光电性质引起了研究人员的广泛关注。其中低维铜(Ⅰ)基卤化物作为高效发光材料的代表,在照明与显示、辐射探测等领域表现出良好的应用前景。有机无机杂化铜(Ⅰ)基卤化物的组成和结构丰富多变,给研究人员提供了巨大的研究空间。本文综述了有机⁃无机杂化铜(Ⅰ)基卤化物作为发光材料的研究进展,并以[Cu
X
n
](
X
=Cl,Br,I)结构单元及其连接方式为依据,对离子型有机⁃无机杂化铜(Ⅰ)基卤化物进行了系统的分类,总结了其组成⁃结构⁃性质之间的构效关系。讨论了有机⁃无机杂化铜(Ⅰ)基卤化物的发光机制和光物理过程,并重点归纳了用于X射线探测的有机⁃无机杂化铜(Ⅰ)基卤化物闪烁体的最新进展。最后,对这一新兴的研究领域做出了展望。
In recent years, organic⁃inorganic hybrid metal halide materials have attracted great attention due to their excellent luminescent properties. In particular, low-dimensional copper(Ⅰ) based halides, as a representative of highly efficient luminescent materials, show great potential in scintillators for radiation detection. In this paper, the research of organic⁃inorganic hybrid copper(Ⅰ) based halides as luminescent materials is reviewed. Based on the [Cu
X
n
](
X
=Cl, Br, I) structural unit and its connection modes, ionic organic⁃inorganic hybrid copper(Ⅰ) based halides are systematically classified, and the relationship between their composition, structure, and properties is discussed. We focus on the photophysical process and luminescence mechanism of organic-inorganic hybrid copper(Ⅰ) based halides. Finally, we summarize the latest progress in organic⁃inorganic hybrid copper(Ⅰ) based halide scintillators for X-ray detection, and make a prospect for this novel research perspective.
有机-无机杂化铜(Ⅰ)基卤化物低维结构发光材料闪烁体
organic⁃inorganic hybrid copper(Ⅰ) based halideslow⁃dimensional structureluminescent materialsscintillators
SHAO W Y, WANG X, ZHANG Z Z, et al. Highly efficient and flexible scintillation screen based on manganese (Ⅱ) activated 2D perovskite for planar and nonplanar high-resolution X-ray imaging [J]. Adv. Opt. Mater., 2022, 10(6): 2102282-1-9. doi: 10.1002/adom.202102282http://dx.doi.org/10.1002/adom.202102282
ZHAO J J, ZHAO L, DENG Y H, et al. Perovskite-filled membranes for flexible and large-area direct-conversion X-ray detector arrays [J]. Nat. Photonics, 2020, 14(10): 612-617. doi: 10.1038/s41566-020-0678-xhttp://dx.doi.org/10.1038/s41566-020-0678-x
HEO J H, SHIN D H, PARK J K, et al. High-performance next-generation perovskite nanocrystal scintillator for nondestructive X-ray imaging [J]. Adv. Mater., 2018, 30(40): 1801743-1-6. doi: 10.1002/adma.201801743http://dx.doi.org/10.1002/adma.201801743
NIKL M, YOSHIKAWA A. Recent R&D trends in inorganic single‐crystal scintillator materials for radiation detection [J]. Adv. Opt. Mater., 2015, 3(4): 463-481. doi: 10.1002/adom.201400571http://dx.doi.org/10.1002/adom.201400571
DUJARDIN C, AUFFRAY E, BOURRET-COURCHESNE E, et al. Needs, trends, and advances in inorganic scintillators [J]. IEEE Trans. Nucl. Sci., 2018, 65(8): 1977-1997. doi: 10.1109/tns.2018.2840160http://dx.doi.org/10.1109/tns.2018.2840160
YAO M N, JIANG J Z, XIN D Y, et al. High-temperature stable FAPbBr3 single crystals for sensitive X-ray and visible light detection toward space [J]. Nano Lett., 2021, 21(9): 3947-3955. doi: 10.1021/acs.nanolett.1c00700http://dx.doi.org/10.1021/acs.nanolett.1c00700
XU H P, LIANG W Q, ZHANG Z Z, et al. 2D perovskite Mn2+-doped Cs2CdBr2Cl2 scintillator for low-dose high-resolution X-ray imaging [J]. Adv. Mater., 2023, 35: 2300136. doi: 10.1002/adma.202300136http://dx.doi.org/10.1002/adma.202300136
WEI H T, HUANG J S. Halide lead perovskites for ionizing radiation detection [J]. Nat. Commun., 2019, 10(1): 1066-1-12. doi: 10.1038/s41467-019-08981-whttp://dx.doi.org/10.1038/s41467-019-08981-w
WU H D, GE Y S, NIU G D, et al. Metal halide perovskites for X-ray detection and imaging [J]. Matter, 2021, 4(1): 144-163. doi: 10.1016/j.matt.2020.11.015http://dx.doi.org/10.1016/j.matt.2020.11.015
CAO J T, GUO Z, ZHU S, et al. Preparation of lead-free two-dimensional-layered (C8H17NH3)2SnBr4 perovskite scintillators and their application in X-ray imaging [J]. ACS Appl. Mater. Interfaces, 2020, 12(17): 19797-19804. doi: 10.1021/acsami.0c02116http://dx.doi.org/10.1021/acsami.0c02116
ZHOU Y C, ZHOU Q, NIU X W, et al. Compositional engineering of doped zero-dimensional zinc halide blue emitters for efficient X-ray scintillation [J]. Inorg. Chem. Front., 2022, 9(12): 2987-2996. doi: 10.1039/d2qi00461ehttp://dx.doi.org/10.1039/d2qi00461e
ZHOU J E, AN K, HE P, et al. Solution-processed lead-free perovskite nanocrystal scintillators for high-resolution X-ray CT imaging [J]. Adv. Opt. Mater., 2021, 9(11): 2002144-1-8. doi: 10.1002/adom.202002144http://dx.doi.org/10.1002/adom.202002144
HAN K, SAKHATSKYI K, JIN J C, et al. Seed-crystal-induced cold sintering toward metal halide transparent ceramic scintillators [J]. Adv. Mater., 2022, 34(17): 2110420-1-8. doi: 10.1002/adma.202110420http://dx.doi.org/10.1002/adma.202110420
LIAN L Y, WANG X, ZHANG P, et al. Highly luminescent zero-dimensional organic copper halides for X-ray scintillation [J]. J. Phys. Chem. Lett., 2021, 12(29): 6919-6926. doi: 10.1021/acs.jpclett.1c01946http://dx.doi.org/10.1021/acs.jpclett.1c01946
XU T T, LI Y Y, NIKL M, et al. Lead-free zero-dimensional organic-copper(Ⅰ) halides as stable and sensitive X-ray scintillators [J]. ACS Appl. Mater. Interfaces, 2022, 14(12): 14157-14164. doi: 10.1021/acsami.1c23839http://dx.doi.org/10.1021/acsami.1c23839
MAO P, TANG Y A, WANG B H, et al. Organic-inorganic hybrid cuprous halide scintillators for flexible X-ray imaging [J]. ACS Appl. Mater. Interfaces, 2022, 14(19): 22295-22301. doi: 10.1021/acsami.2c02660http://dx.doi.org/10.1021/acsami.2c02660
WEI J H, YU Y W, LUO J B, et al. Bright cyan-emissive copper(Ⅰ)-halide single crystals for multi-functional applications [J]. Adv. Opt. Mater., 2022, 10(16): 2200724-1-9. doi: 10.1002/adom.202200724http://dx.doi.org/10.1002/adom.202200724
SU B B, JIN J C, HAN K, et al. Ceramic wafer scintillation screen by utilizing near-unity blue-emitting lead-free metal halide (C8H20N)2Cu2Br4 [J]. Adv. Funct. Mater., 2023, 33(5): 2210735-1-10. doi: 10.1002/adfm.202210735http://dx.doi.org/10.1002/adfm.202210735
苏彬彬, 夏志国. 新兴零维金属卤化物的光致发光与应用研究进展 [J]. 发光学报, 2021, 42(6): 733-754. doi: 10.37188/CJL.20210088http://dx.doi.org/10.37188/CJL.20210088
SU B B, XIA Z G. Research progresses of photoluminescence and application for emerging zero-dimensional metal halides luminescence materials [J]. Chin. J. Lumin., 2021, 42(6): 733-754. (in Chinese). doi: 10.37188/CJL.20210088http://dx.doi.org/10.37188/CJL.20210088
杨洁, 皮明雨, 张丁可, 等. 低维钙钛矿光电探测器研究进展 [J]. 发光学报, 2021, 42(6): 755-773. doi: 10.37188/CJL.20210033http://dx.doi.org/10.37188/CJL.20210033
YANG J, PI M Y, ZHANG D K, et al. Recent progress on low-dimensional perovskite photodetectors [J]. Chin. J. Lumin., 2021, 42(6): 755-773. (in Chinese). doi: 10.37188/CJL.20210033http://dx.doi.org/10.37188/CJL.20210033
LIU W, FANG Y, LI J. Copper iodide based hybrid phosphors for energy-efficient general lighting technologies [J]. Adv. Funct. Mater., 2018, 28(8): 1705593-1-24. doi: 10.1002/adfm.201705593http://dx.doi.org/10.1002/adfm.201705593
NEWTON G, CAUGHMAN H D, TAYLOR R C. Synthesis and solid-state crystal structure of [2-(Diphenylphosphinoyl)⁃Ethyl] Diethylammonium Dichlorocuprate(Ⅰ), containing a discrete CuCl2-anion [J]. J. Chem. Soc., Dalton Trans., 1974, (3): 258-264. doi: 10.1039/dt9740000258http://dx.doi.org/10.1039/dt9740000258
CHEN S Q, GAO J M, CHANG J Y, et al. Family of highly luminescent pure ionic copper(Ⅰ) bromide based hybrid materials [J]. ACS Appl. Mater. Interfaces, 2019, 11(19): 17513-17520. doi: 10.1021/acsami.9b02418http://dx.doi.org/10.1021/acsami.9b02418
ANDERSSON S, JAGNER S. Crystal structure of tetrapropylammonium dichlorocuprate(Ⅰ); comparison of anionic configurations in halocuprates(Ⅰ) crystallizing with symmetrical tetraalkylammonium and related cations [J]. Acta Chem. Scand. Ser. A, 1986, 40: 52-57. doi: 10.3891/acta.chem.scand.40a-0052http://dx.doi.org/10.3891/acta.chem.scand.40a-0052
ANDERSSON S, JAGNER S. Crystal structure of ethyltriphenylphosphonium dibromocuprate(Ⅰ), [P(C2H5)(C6H5)3]⁃[CuBr2] [J]. Acta Chem. Scand. Ser. A, 1985, 39: 515-521. doi: 10.3891/acta.chem.scand.39a-0515http://dx.doi.org/10.3891/acta.chem.scand.39a-0515
ANDERSSON S, JAGNER S. Crystal structure of propyltriphenylphosphonium dibromocuprate(Ⅰ), [P(C3H7)(C6H5)3]⁃[CuBr2] [J]. Acta Chem. Scand. Ser. A, 1985, 39(8): 577-581. doi: 10.3891/acta.chem.scand.39a-0577http://dx.doi.org/10.3891/acta.chem.scand.39a-0577
ANDERSSON S, JAGNER S. Anionic configurations and ligand concentrations in butyltriphenylphosphonium dibromocuprate(Ⅰ) and bis(butyltriphenylphosphonium) hexa-μ-bromo-tetrahedro-tetracuprate(Ⅰ) [J]. Acta Chem. Scand. Ser. A, 1986, 40: 210-217. doi: 10.3891/acta.chem.scand.40a-0210http://dx.doi.org/10.3891/acta.chem.scand.40a-0210
KOVALCHUKOVA O V, STASH A I, STRASHNOVA S B, et al. Interaction of copper(Ⅱ) halides with 4⁃(piperidyl⁃1)⁃2⁃phenylpyrido[2, 3-a]anthraquinone-7, 12 (L) in acidic media: Crystal structure and spectral characteristics of (HL)2⁃[Cu2Cl6] and (HL) [CuBr2] [J]. Crystallogr. Rep., 2008, 53(3): 451-454. doi: 10.1134/s1063774508030115http://dx.doi.org/10.1134/s1063774508030115
HU M C, WANG X H, JIANG Y C, et al. A three-dimensional supramolecular complex [Cs(DB24C8)] [CuBr2] based on C—H⋯π and Cs⋯Br weak interactions [J]. Inorg. Chem. Commun., 2008, 11(1): 85-88. doi: 10.1016/j.inoche.2007.10.023http://dx.doi.org/10.1016/j.inoche.2007.10.023
CHITSAZ S, NEUMÜLLER B, DEHNICKE K. Syntheses und kristallstrukturen von [(Ph3As)2CCN⁃MnBr3], [(Ph3As)2CCN⁃CoBr3] und [(Ph3As)2CCN]+CuBr2– [J]. Z. Anorg. Allg. Chem., 1999, 625(3): 503-506. doi: 10.1002/(sici)1521-3749(199903)625:3<503::aid-zaac503>3.0.co;2-khttp://dx.doi.org/10.1002/(sici)1521-3749(199903)625:3<503::aid-zaac503>3.0.co;2-k
ANDERSSON S, JAGNER S. Crystal structures of tetraphenylarsonium dichlorocuprate(Ⅰ), tetraphenylphosphonium dichlorocuprate(Ⅰ) and tetraphenylphosphonium dibromocuprate(Ⅰ) [J]. Acta Chem. Scand. Ser. A, 1985, 39: 297-305. doi: 10.3891/acta.chem.scand.39a-0297http://dx.doi.org/10.3891/acta.chem.scand.39a-0297
ANDERSSON S, JAGNER S. Crstal structure of phenyltrimethylammonium dichorocuprate(Ⅰ), [N(C6H5)(CH3)3][CuCl2] [J]. Acta Chem. Scandi. A, 1985, 39: 799-812. doi: 10.3891/acta.chem.scand.39a-0799http://dx.doi.org/10.3891/acta.chem.scand.39a-0799
RATH N P, HOLT E M. Synthesis and structural characterization of CuI2- [J]. J. Chem. Soc., Chem. Commun., 1986, (4): 311-312. doi: 10.1039/c39860000311http://dx.doi.org/10.1039/c39860000311
BOWMAKER G A, BRUCE M I, SKELTON B W, et al. Structural and spectroscopic studies of halocuprate(Ⅰ) and haloargentate(Ⅰ) complexes [M2XnX'4-n]2- [J]. Z. Anorg. Allg. Chem., 2007, 633(7): 1024-1030. doi: 10.1002/zaac.200700051http://dx.doi.org/10.1002/zaac.200700051
BOWMAKER G A, CLARK G R, ROGERS D A, et al. Structural and spectroscopic characterization of complexes containing the mononuclear trihalogenometalates [CuI3]2–, [CuBr3]2–, and [AgI3]2–. Crystal structure of [PMePh3]2[CuI3] [J]. J. Chem. Soc., Dalton Trans., 1984(1): 37-45. doi: 10.1039/dt9840000037http://dx.doi.org/10.1039/dt9840000037
ANDERSSON S, JAGNER S. Coordination of copper(Ⅰ) in bis(tetramethylphosphonium) tribromocuprate(Ⅰ) and bis(tetraethylphosphonium) di-μ-bromo-dibromodicuprate(Ⅰ); comparison of anionic configurations in bromocuprates(Ⅰ)crystallizing with symmetrical tetraalkylammonium and related cations [J]. Acta Chem. Scand. Ser. A, 1987, 41(4): 230-236. doi: 10.3891/acta.chem.scand.41a-0230http://dx.doi.org/10.3891/acta.chem.scand.41a-0230
ANDERSSON S, JAGNER S. Coordination of copper(Ⅰ) in two novel chlorocuprate(Ⅰ) anions; structures of tetramethylphosphonium catena-μ-chloro-μ3-chloro-[μ-chloro-dicuprate(Ⅰ)] and bis(tetramethylphosphonium) trichlorocuprate(Ⅰ) [J]. Acta Chem. Scand. Ser. A, 1988, 42: 691-697. doi: 10.1002/chin.198911004http://dx.doi.org/10.1002/chin.198911004
HARTL H, BRÜDGAM I. Synthese und strukturuntersuchungen von iodocupratenⅠ) x. [Co(Cp)2]2[CuI3] und [Co(cp)2][Cu2I3] = 1/9{ [Co(C(cp)2]9[Cu6I11]∞2[(Cu6I8)2]} [I]/syntheses and structure analyses of iodocuprates(Ⅰ) X. [Co(cp)2]2[CuI3] and [Co(cp)2][Cu2I3] = 1/9{[Co(cp)2]9[Cu6I11]∞2[(Cu6I8)2]} [1] [J]. Z. Naturforsch., 1989, 44(8): 936-941.
LI Y H, ZHENG R, FU Z H, et al. Crystal structure and optical properties of in situ synthesized organic-inorganic hybrid metal halides [J]. Inorg. Chem. Commun., 2022, 139: 109339-1-7. doi: 10.1016/j.inoche.2022.109339http://dx.doi.org/10.1016/j.inoche.2022.109339
LIAN L Y, WANG S, DING H Y, et al. Single-component white-light emitters with excellent color rendering indexes and high photoluminescence quantum efficiencies [J]. Adv. Opt. Mater., 2022, 10(1): 2101640-1-8. doi: 10.1002/adom.202101640http://dx.doi.org/10.1002/adom.202101640
ASPLUND M, JAGNER S, NILSSON M. The crystal structure of bis(tetrabutylammonium) di-μ-iodo-diiododicuprate(Ⅰ), [N(C4H9)4]2[Cu2I4] [J]. Acta Chem. Scand. Ser. A, 1982, 36: 751-755. doi: 10.3891/acta.chem.scand.36a-0751http://dx.doi.org/10.3891/acta.chem.scand.36a-0751
ANDERSSON S, JAGNER S. Crystal structure of bis(phenyltrimethylammonium) di-μ-bromo-dibromodicuprate (Ⅰ) [J]. Acta Chem. Scand. Ser. A, 1985, 39: 423-428. doi: 10.3891/acta.chem.scand.39a-0423http://dx.doi.org/10.3891/acta.chem.scand.39a-0423
ASPLUND M, JAGNER S. Crystal structure of bis(tetraphenylarsonium) di-μ-iododiiododicuprate(Ⅰ), [As(C6H5)4]2⁃[Cu2I4] [J]. Acta Chem. Scand. Ser. A, 1984, 38: 297-301. doi: 10.3891/acta.chem.scand.38a-0297http://dx.doi.org/10.3891/acta.chem.scand.38a-0297
ASPLUND M, JAGNER S. Crystal structure of bis(tetrapropylammonium) di-μ-iodo-diiododicuprate(Ⅰ), [N(C3H7)4]2⁃[Cu2I4] [J]. Acta Chem. Scand. Ser. A, 1984, 38: 411-421. doi: 10.3891/acta.chem.scand.38a-0411http://dx.doi.org/10.3891/acta.chem.scand.38a-0411
CHEN M S, YE C Y, DAI C Q, et al. Highly luminescent copper(Ⅰ) halide phosphors encapsulated in fumed silica for anti-counterfeiting and color-converting applications [J]. Adv. Opt. Mater., 2022, 10(13): 2200278-1-12. doi: 10.1002/adom.202200278http://dx.doi.org/10.1002/adom.202200278
LIU X, LI Y, ZHOU L, et al. Coupling intracompound charge transfer and cluster-centered excited states in Cu(Ⅰ) halide hybrids for efficient white light emission [J]. Adv. Opt. Mater., 2022, 10(21): 2200944-1-8. doi: 10.1002/adom.202200944http://dx.doi.org/10.1002/adom.202200944
HASSELGREN C, JAGNER S. Halocuprates(Ⅰ)crystallising with the Ph3PNPPh3+ cation: preparation and structural characterisation of (Ph3PNPPh3)2[Cu4Br6] and (Ph3PNPPh3)[CuBrCl] [J]. Inorg. Chim. Acta, 2002, 336: 137-141. doi: 10.1016/s0020-1693(02)00848-4http://dx.doi.org/10.1016/s0020-1693(02)00848-4
GAUTIER R, LATOUCHE C, PARIS M, et al. Thermochromic luminescent materials and multi-emission bands in d10 clusters [J]. Sci. Rep., 2017, 7(1): 45537-1-6. doi: 10.1038/srep45537http://dx.doi.org/10.1038/srep45537
LATOUCHE C, GAUTIER R, GÉNOIS R, et al. Structural and spectroscopic investigations of two [Cu4X6]2-(X = Cl-, Br-) clusters: A joint theoretical and experimental work [J]. J. Phys. Chem. A, 2018, 122(19): 4628-4634. doi: 10.1021/acs.jpca.8b02663http://dx.doi.org/10.1021/acs.jpca.8b02663
HARTL H, MAHDJOUR-HASSAN-ABADI F. Preparation and structure of iodocuprates(Ⅰ) with tetrahedral face-to-face coupling [J]. Angew. Chem. Int. Ed., 1981, 20(9): 772-773. doi: 10.1002/anie.198107721http://dx.doi.org/10.1002/anie.198107721
LIU S H, CHEN J D, LIOU L S, et al. Synthesis and crystal structures of (C5H7N3Br)3CuBr4 and (C5H8N3)CuBr2: an isolated tetrahedral CuBr43- anion [J]. Inorg. Chem., 2001, 40(25): 6499-6501. doi: 10.1021/ic010529chttp://dx.doi.org/10.1021/ic010529c
PENG H, WANG X X, TIAN Y, et al. Highly efficient cool-white photoluminescence of (Gua)3Cu2I5 single crystals: formation and optical properties [J]. ACS Appl. Mater. Interfaces, 2021, 13(11): 13443-13451. doi: 10.1021/acsami.1c02503http://dx.doi.org/10.1021/acsami.1c02503
PENG H, YAO S F, GUO Y C, et al. Highly efficient self-trapped exciton emission of a (MA)4Cu2Br6 single crystal [J]. J. Phys. Chem. Lett., 2020, 11(12): 4703-4710. doi: 10.1021/acs.jpclett.0c01162http://dx.doi.org/10.1021/acs.jpclett.0c01162
LIU X Y, LI Y Y, LIANG T Y, et al. One-center and two-center self-trapped excitons in zero-dimensional hybrid copper halides: Tricolor luminescence with high quantum yields [J]. J. Phys. Chem. Lett., 2022, 13(5): 1373-1381. doi: 10.1021/acs.jpclett.2c00002http://dx.doi.org/10.1021/acs.jpclett.2c00002
SU B B, JIN J C, PENG Y H, et al. Zero-dimensional organic copper(Ⅰ) iodide hybrid with high anti-water stability for blue-light-excitable solid-state lighting [J]. Adv. Opt. Mater., 2022, 10(12): 2102619-1-10. doi: 10.1002/adom.202102619http://dx.doi.org/10.1002/adom.202102619
HADDAD S, WILLETT R D. Dimeric Cu(Ⅰ) bromide species consisting of two edge-shared tetrahedra: crystal structure of (C8H14N2)2Cu2Br6 [J]. Inorg. Chem., 2001, 40(4): 809-811. doi: 10.1021/ic000672qhttp://dx.doi.org/10.1021/ic000672q
WILLETT R D. Crystal structure of bis(n-methylethylenediammonium) hexabromodicuprate(Ⅰ) [J]. Inorg. Chim. Acta, 2004, 357(5): 1579-1582. doi: 10.1016/j.ica.2003.11.024http://dx.doi.org/10.1016/j.ica.2003.11.024
HARTL H. [{Co(Cp)2}{CuI2}]n (n=3, 4), cobaltocenium iodocuprates(Ⅰ) with unusual anion structures [J]. Angew. Chem. Int. Ed., 1987, 26(9): 927-928. doi: 10.1002/anie.198709271http://dx.doi.org/10.1002/anie.198709271
ANDERSSON S, JAGNER S. Crystal structure of bis(methyltributylammonium) penta-μ-bromo-di-μ5-bromo-pentacuprate(Ⅰ), a compound containing a discrete [Cu5Br7]2- aggregate [J]. J. Cryst. Spect. Res., 1988, 18(5): 591-600. doi: 10.1007/bf01161152http://dx.doi.org/10.1007/bf01161152
MAHDJOUR-HASSAN-ABADI F, HARTL H, FUCHS J. [Cu6I11]5⊖ a polyanion with trigonal-prismatic arrangement of six metal atoms [J]. Angew. Chem. Int. Ed., 1984, 23(7): 514-515. doi: 10.1002/anie.198405141http://dx.doi.org/10.1002/anie.198405141
FANG S F, ZHOU B, LI H X, et al. Highly reversible moisture-induced bright self-trapped exciton emissions in a copper-based organic-inorganic hybrid metal halide [J]. Adv. Opt. Mater., 2022, 10(15): 2200605-1-10. doi: 10.1002/adom.202200605http://dx.doi.org/10.1002/adom.202200605
RATH N P, HOLT E M. Copper(Ⅰ) iodide complexes of novel structure: [Cu4I6][Cu8I13]K7(12-Crown-4)6, [Cu4I6]K2(15-Crown-5)2, and [Cu3I4]K(Dibenzo-24-Crown-8) [J]. J. Chem. Soc., Chem. Commun., 1985, (10): 665-667. doi: 10.1039/c39850000665http://dx.doi.org/10.1039/c39850000665
MURRAY-RUST P. The crystal structure of [Co(NH3)6]4Cu5Cl17: a twinned cubic crystal [J]. Acta Cryst. B, 1973, B29: 2559-2566. doi: 10.1107/s0567740873007004http://dx.doi.org/10.1107/s0567740873007004
HARTL H, MAHDJOUR-HASSAN-ABADI F. [(C6H5)4P]∞1[Cu3I4]-The first compound with a helical chain of face-sharing tetrahedra as a structural element [J]. Angew. Chem. Int. Ed., 1994, 33(18): 1841-1842. doi: 10.1002/anie.199418411http://dx.doi.org/10.1002/anie.199418411
WEN R, MA X J, ZHANG K, et al. One-dimensional perovskite-like Cu(Ⅰ)-halides with ideal bandgap based on quantum-well structure [J]. Inorg. Chem., 2022, 61(22): 8521-8528. doi: 10.1021/acs.inorgchem.2c00531http://dx.doi.org/10.1021/acs.inorgchem.2c00531
YUE C Y, LIN N, GAO L, et al. Organic cation directed one-dimensional cuprous halide compounds: Syntheses, crystal structures and photoluminescence properties [J]. Dalton Trans., 2019, 48(27): 10151-10159. doi: 10.1039/c9dt01460hhttp://dx.doi.org/10.1039/c9dt01460h
YUE Y D, SUN C, ZHANG W F, et al. Syntheses, crystal structures and visible light driven photocatalytic properties of organic-inorganic hybrid cuprous halides [J]. J. Solid State Chem., 2020, 285: 121212-1-6. doi: 10.1016/j.jssc.2020.121212http://dx.doi.org/10.1016/j.jssc.2020.121212
PENG R, LI M, LI D. Copper(Ⅰ) halides: a versatile family in coordination chemistry and crystal engineering [J]. Coord. Chem. Rev., 2010, 254(1): 1-18. doi: 10.1016/j.ccr.2009.10.003http://dx.doi.org/10.1016/j.ccr.2009.10.003
JAGNER S, HELGESSON G. On the coordination number of the metal in crystalline halogenocuprates(Ⅰ) and halogenoargentates(Ⅰ) [J]. Adv. Inorg. Chem., 1991, 37: 1-45. doi: 10.1016/s0898-8838(08)60004-5http://dx.doi.org/10.1016/s0898-8838(08)60004-5
PENG H, XIAO Y H, TIAN Y, et al. Dual self-trapped exciton emission of (TBA)2Cu2I4: optical properties and high anti-water stability [J]. J. Mater. Chem. C, 2021, 9(44): 16014-16021. doi: 10.1039/d1tc04011ahttp://dx.doi.org/10.1039/d1tc04011a
TAN J B, LI D L, ZHU J Q, et al. Self-trapped excitons in soft semiconductors [J]. Nanoscale, 2022, 14(44): 16394-16414. doi: 10.1039/d2nr03935dhttp://dx.doi.org/10.1039/d2nr03935d
THOUIN F, VALVERDE-CHÁVEZ D A, QUARTI C, et al. Phonon coherences reveal the polaronic character of excitons in two-dimensional lead halide perovskites [J]. Nat. Mater., 2019, 18(4): 349-356. doi: 10.1038/s41563-018-0262-7http://dx.doi.org/10.1038/s41563-018-0262-7
SMITH M D, KARUNADASA H I. White-light emission from layered halide perovskites [J]. Accounts Chem. Res., 2018, 51(3): 619-627. doi: 10.1021/acs.accounts.7b00433http://dx.doi.org/10.1021/acs.accounts.7b00433
LI J Z, WANG H Z, LI D H. Self-trapped excitons in two-dimensional perovskites [J]. Front. Optoelectron., 2020, 13(3): 225-234. doi: 10.1007/s12200-020-1051-xhttp://dx.doi.org/10.1007/s12200-020-1051-x
VITALE M, RYU C K, PALKE W E, et al. Ab initio studies of the Copper(Ⅰ) tetramers Cu4X4L4 (X = I, Br, Cl). effects of cluster structure and of halide on photophysical properties [J]. Inorg. Chem., 1994, 33(3): 561-566. doi: 10.1021/ic00081a026http://dx.doi.org/10.1021/ic00081a026
PENG H, WANG X X, TIAN Y, et al. Water-stable zero-dimensional (C4H9)4NCuCl2 single crystal with highly efficient broadband green emission [J]. J. Phys. Chem. Lett., 2021, 12(28): 6639-6647.
PENG H, TIAN Y, WANG X X, et al. Pure white emission with 91.9% photoluminescence quantum yield of [(C3H7)4N]2Cu2I4 out of polaronic states and ultra-high color rendering index [J]. ACS Appl. Mater. Interfaces, 2022, 14(10): 12395-12403. doi: 10.1021/acsami.2c00006http://dx.doi.org/10.1021/acsami.2c00006
LIAN L Y, ZHANG P, LIANG G J, et al. Efficient dual-band white-light emission with high color rendering from zero-dimensional organic copper iodide [J]. ACS Appl. Mater. Interfaces, 2021, 13(19): 22749-22756. doi: 10.1021/acsami.1c03881http://dx.doi.org/10.1021/acsami.1c03881
HUANG J L, SU B B, SONG E H, et al. Ultra-broad-band-excitable Cu(Ⅰ)-based organometallic halide with near-unity emission for light-emitting diode applications [J]. Chem. Mater., 2021, 33(12): 4382-4389. doi: 10.1021/acs.chemmater.1c00085http://dx.doi.org/10.1021/acs.chemmater.1c00085
LI S, XU J, LI Z G, et al. One-dimensional lead-free halide with near-unity greenish-yellow light emission [J]. Chem. Mater., 2020, 32(15): 6525-6531. doi: 10.1021/acs.chemmater.0c01794http://dx.doi.org/10.1021/acs.chemmater.0c01794
HE T Y, ZHOU Y, YUAN P, et al. Copper iodide inks for high-resolution X-ray imaging screens [J]. ACS Energy Lett., 2023, 8(3): 1362-1370. doi: 10.1021/acsenergylett.3c00097http://dx.doi.org/10.1021/acsenergylett.3c00097
宗佳, 李维俊, 刘璐璐, 等. 杂化X射线探测器的优势与进展 [J]. 发光学报, 2023, 44(3): 496-507. doi: 10.37188/CJL.20220327http://dx.doi.org/10.37188/CJL.20220327
ZONG J, LI W J, LIU L L, et al. Advances and progress of hybrid X-ray detectors [J]. Chin. J. Lumin., 2023, 44(3): 496-507. doi: 10.37188/CJL.20220327http://dx.doi.org/10.37188/CJL.20220327
VAN EIJK C W E. Inorganic scintillators in medical imaging [J]. Phys. Med. Biol., 2002, 47(8): R85-R106. doi: 10.1088/0031-9155/47/8/201http://dx.doi.org/10.1088/0031-9155/47/8/201
NIU X W, XIAO J W, LOU B B, et al. Highly efficient blue emissive copper halide Cs5Cu3Cl6I2 scintillators for X-ray detection and imaging [J]. Ceram. Int., 2022, 48(20): 30788-30796. doi: 10.1016/j.ceramint.2022.07.032http://dx.doi.org/10.1016/j.ceramint.2022.07.032
MCCORMACK O, GIACOMELLI L, CROCI G, et al. Characterization and operational stability of EJ276 plastic scintillator-based detector for neutron spectroscopy [J]. J. Instrum., 2021, 16(10): P10002-1-18. doi: 10.1088/1748-0221/16/10/p10002http://dx.doi.org/10.1088/1748-0221/16/10/p10002
JANDA J, JÁNSKÝ J, MAZÁNKOVÁ V, et al. The long-term stability of liquid organic scintillators used for gamma-neutron separation [J]. IEEE Trans. Nucl. Sci., 2022, 69(4): 768-776. doi: 10.1109/tns.2021.3111635http://dx.doi.org/10.1109/tns.2021.3111635
0
浏览量
869
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构