浏览全部资源
扫码关注微信
1.中国科学院长春光学精密机械与物理研究所 发光学及应用国家重点实验室, 吉林 长春 130033
2.中国科学院大学, 北京 100049
[ "杨润(1997-),男,黑龙江哈尔滨人,硕士研究生,2020年于吉林大学获得学士学位,主要从事稀土纳米材料发光性质及其生物功能化的研究。2464189279@qq.com" ]
[ "李齐清(1990-),男,福建福州人,博士,2018年于中国科学院大学获得博士学位,主要从事稀土掺杂上转换纳米发光材料的研究。 E-mail: liqiqing0742@sina.cn" ]
[ "常钰磊(1984-),男,吉林通化人,博士,副研究员,博士生导师,2013年于吉林大学获得博士学位,主要从事光子纳米材料及应用的研究。yuleichang@ciomp.ac.cn" ]
纸质出版日期:2023-09-05,
收稿日期:2023-04-19,
修回日期:2023-05-04,
移动端阅览
杨润,陈浩然,涂浪平等.反向能量传递增强Er3+上转换发光[J].发光学报,2023,44(09):1552-1559.
YANG Run,CHEN Haoran,TU Langping,et al.Back Energy Transfer Enhances Er3+ Upconversion Luminescence[J].Chinese Journal of Luminescence,2023,44(09):1552-1559.
杨润,陈浩然,涂浪平等.反向能量传递增强Er3+上转换发光[J].发光学报,2023,44(09):1552-1559. DOI: 10.37188/CJL.20230100.
YANG Run,CHEN Haoran,TU Langping,et al.Back Energy Transfer Enhances Er3+ Upconversion Luminescence[J].Chinese Journal of Luminescence,2023,44(09):1552-1559. DOI: 10.37188/CJL.20230100.
提高上转换发光效率是促进上转换发光材料实际应用的关键。在NaErF
4
@NaYF
4
体系中,惰性NaYF
4
壳层可以抑制高组分Er
3+
掺杂下的发光浓度猝灭,其上转换发光主要来源于Er
3+
⁃Er
3+
的能量传递上转换。本文利用共沉淀法制备了Er
3+
和Yb
3+
分区掺杂的NaErF
4
@NaYbF
4
@NaYF
4
核壳结构的纳米颗粒,通过包覆惰性壳层研究Er
3+
⁃Yb
3+
⁃Er
3+
之间的能量传递和反向能量传递过程。由于808 nm波长只能激发Er
3+
而不能激发Yb
3+
,因此在808 nm波长激发下,Er
3+
在惰性壳层的保护作用下将激发态能量传递给Yb
3+
,随后通过反向能量传递回Er
3+
,使得Er
3+
的上转换发光增强。实验结果发现,当中间层Yb
3+
掺杂浓度为100%时,绿色和红色上转换发光最大增强倍数为24.9和9.79。
Improving the upconversion luminescence efficiency is the key to promoting the practical application of upconversion luminescent materials. In the NaErF
4
@NaYF
4
system, the inert NaYF
4
shell can inhibit the concentration quenching under high Er
3+
doping, and the upconversion luminescence is mainly from the energy transfer upconversion of Er
3+
-Er
3+
. In this paper, Er
3+
and Yb
3+
partition doped NaErF
4
@NaYbF
4
@NaYF
4
core-shell nanoparticles were prepared by the coprecipitation method, and the energy transfer and back energy transfer processes between Er
3+
-Yb
3+
-Er
3+
was studied. Since the 808 nm can only excite Er
3+
but not Yb
3+
, under 808 nm excitation, Er
3+
harvests the pumping energy and transfers it to Yb
3+
and subsequently back to Er
3+
due to the protection offered by NaYF
4
inert outer shell, which finally enhances the upconversion luminescence of Er
3+
. When the doping concentration of Yb
3+
in the intermediate layer is 100%, the maximum enhancement multiple is 24.9 and 9.79 for green and red upconversion, respectively.
稀土纳米材料上转换发光反向能量传递β-NaErF4
rare earth nanoparticlesupconversion luminescenceback energy transferβ-NaErF4
DING M Y, CUI S S, FANG L, et al. NIR-I-responsive single-band upconversion emission through energy migration in core-shell-shell nanostructures [J]. Angew. Chem. Int. Ed., 2022, 61(29): e202203631. doi: 10.1002/anie.202203631http://dx.doi.org/10.1002/anie.202203631
RESZCZYŃSKA J, GRZYB T, SOBCZAK J W, et al. Visible light activity of rare earth metal doped (Er3+, Yb3+ or Er3+/Yb3+) titania photocatalysts [J]. Appl. Catal. B Environ., 2015, 163: 40-49. doi: 10.1016/j.apcatb.2014.07.010http://dx.doi.org/10.1016/j.apcatb.2014.07.010
PARNICKA P, MAZIERSKI P, GRZYB T, et al. Influence of the preparation method on the photocatalytic activity of Nd-modified TiO2 [J]. Beilstein J. Nanotechnol., 2018, 9: 447-459. doi: 10.3762/bjnano.9.43http://dx.doi.org/10.3762/bjnano.9.43
CHEN Y, CHEN Q, SONG L, et al. Preparation and characterization of encapsulation of europium complex into meso-structured silica monoliths using PEG as the template [J]. Microporous Mesoporous Mater., 2009, 122(1-3): 7-12. doi: 10.1016/j.micromeso.2008.12.021http://dx.doi.org/10.1016/j.micromeso.2008.12.021
CAVALLO C, SALLEO A, GOZZI D, et al. Solid solutions of rare earth cations in mesoporous anatase beads and their performances in dye-sensitized solar cells [J]. Scientific Reports, 2015, 5: 16785-1-15. doi: 10.1038/srep16785http://dx.doi.org/10.1038/srep16785
ADHIKARI R, GYAWALI G, CHO S H, et al. Er3+/Yb3+ co-doped bismuth molybdate nanosheets upconversion photocatalyst with enhanced photocatalytic activity [J]. J. Solid State Chem., 2014, 209: 74-81. doi: 10.1016/j.jssc.2013.10.028http://dx.doi.org/10.1016/j.jssc.2013.10.028
RESZCZYNSKA J, IWULSKA A, SLIWINSKI G, et al. Characterization and photocatalytic activity of rare earth metal-doped titanium dioxide [J]. Physicochem. Probl. Miner. Process., 2012, 48(1): 201-208.
GRAUEL B, WÜRTH C, HOMANN C, et al. Volume and surface effects on two-photonic and three-photonic processes in dry co-doped upconversion nanocrystals [J]. Nano Res., 2022, 15(3): 2362-2373. doi: 10.1007/s12274-021-3727-yhttp://dx.doi.org/10.1007/s12274-021-3727-y
KAISER M, WÜRTH C, KRAFT M, et al. Explaining the influence of dopant concentration and excitation power density on the luminescence and brightness of β-NaYF4∶Yb3+,Er3+ nanoparticles: measurements and simulations [J]. Nano Res., 2019, 12(8): 1871-1879. doi: 10.1007/s12274-019-2450-4http://dx.doi.org/10.1007/s12274-019-2450-4
ZHANG F, WAN Y, SHI Y F, et al. Ordered mesostructured rare-earth fluoride nanowire arrays with upconversion fluorescence [J]. Chem. Mater., 2008, 20(11): 3778-3784. doi: 10.1021/cm800489ehttp://dx.doi.org/10.1021/cm800489e
FRENZEL F, WÜRTH C, DUKHNO O, et al. Multiband emission from single β-NaYF4(Yb, Er) nanoparticles at high excitation power densities and comparison to ensemble studies [J]. Nano Res., 2021, 14(11): 4107-4115. doi: 10.1007/s12274-021-3350-yhttp://dx.doi.org/10.1007/s12274-021-3350-y
CHEN J, GAO Y X, WANG C, et al. Effective regulation of upconversion luminescence in NaErF4 and NaErF4@SiO2 core-shell particles [J]. Ceram. Int., 2022, 48(10): 14315-14322. doi: 10.1016/j.ceramint.2022.01.321http://dx.doi.org/10.1016/j.ceramint.2022.01.321
GAO W, XING Y, CHEN B H, et al. Enhancing red upconversion emission in NaErF4@NaYF4 core-shell nanoparticles by introducing Yb3+ ions as energy trapping centers [J]. J. Alloys Compd., 2023, 936: 168371. doi: 10.1016/j.jallcom.2022.168371http://dx.doi.org/10.1016/j.jallcom.2022.168371
LIU Y F, PAN G C, GAO H P, et al. Single band red emission of Er3+ ions heavily doped upconversion nanoparticles realized by active-core/active-shell structure [J]. Ceram. Int., 2021, 47(13): 18824-18830. doi: 10.1016/j.ceramint.2021.03.220http://dx.doi.org/10.1016/j.ceramint.2021.03.220
LI Q Q, XIE X Y, WU H, et al. Superenhancement photon upconversion nanoparticles for photoactivated nanocryometer [J]. Nano Lett., 2023, 23(8): 3444-3450. doi: 10.1021/acs.nanolett.3c00495http://dx.doi.org/10.1021/acs.nanolett.3c00495
禹庭, 郑成中, 赵闪闪, 等. Monte Carlo模拟在稀土掺杂发光材料能量传递机理研究中的应用进展 [J]. 发光学报, 2022, 43(9): 1390-1404. doi: 10.37188/cjl.20220188http://dx.doi.org/10.37188/cjl.20220188
YU T, ZHENG C Z, ZHAO S S, et al. Progress on application of monte carlo simulation in studying energy transfer mechanisms for rare-earth luminescent materials [J]. Chin. J. Lumin., 2022, 43(9): 1390-1404. (in Chinese). doi: 10.37188/cjl.20220188http://dx.doi.org/10.37188/cjl.20220188
ANGELI G K, BATZAVALI D, MAVRONASOU K, et al. Remarkable structural diversity between Zr/Hf and rare-earth MOFs via ligand functionalization and the discovery of unique (4, 8)-c and (4, 12)-connected frameworks [J]. J. Am. Chem. Soc., 2020, 142(37): 15986-15994. doi: 10.1021/jacs.0c07081http://dx.doi.org/10.1021/jacs.0c07081
ARTIUSHENKO O, ÁVILA E P, NAZARKOVSKY M, et al. Reusable hydroxamate immobilized silica adsorbent for dispersive solid phase extraction and separation of rare earth metal ions [J]. Sep. Purif. Technol., 2020, 231: 115934-1-10. doi: 10.1016/j.seppur.2019.115934http://dx.doi.org/10.1016/j.seppur.2019.115934
YAO X T, ZHEN H R, ZHANG D F, et al. Microwave-assisted hydrothermal synthesis of broadband Yb3+/Er3+ co-doped BiOI/Bi2O4 photocatalysts with synergistic effects of upconversion and direct Z-scheme heterojunction [J]. Colloids Surf. A Physicochem. Eng. Aspects, 2022, 648: 129276. doi: 10.1016/j.colsurfa.2022.129276http://dx.doi.org/10.1016/j.colsurfa.2022.129276
LIAO C, ZHAO X R, JIANG X Y, et al. Hydrothermal fabrication of novel three-dimensional graphene oxide-pentaerythritol composites with abundant oxygen-containing groups as efficient adsorbents [J]. Microchem. J., 2020, 152: 104288-1-7. doi: 10.1016/j.microc.2019.104288http://dx.doi.org/10.1016/j.microc.2019.104288
SALTON I, IOFFE K, BURSHTEIN T Y, et al. Lanthanoid coordination compounds as diverse self-templating agents towards hierarchically porous Fe-N-C electrocatalysts [J]. Mater. Adv., 2022, 3(21): 7937-7945. doi: 10.1039/d2ma00596dhttp://dx.doi.org/10.1039/d2ma00596d
相国涛, 刘小桐, 夏清, 等. β-NaYF4∶Yb3+ /Er3+@β-NaYF4∶Yb3+的上转换发光特性 [J]. 发光学报, 2020, 41(6): 679-683. doi: 10.3788/fgxb20204106.0679http://dx.doi.org/10.3788/fgxb20204106.0679
XIANG G T, LIU X T, XIA Q, et al. Upconversion luminescence properties of β-NaYF4∶Yb3+ /Er3+ @β-NaYF4∶Yb3+ [J]. Chin. J. Lumin., 2020, 41(6): 679-683. (in Chinese). doi: 10.3788/fgxb20204106.0679http://dx.doi.org/10.3788/fgxb20204106.0679
ZHANG Y, XU S, LI X, et al. Concentration quenching of blue upconversion luminescence in Tm3+/Yb3+ co-doped Gd2⁃(WO4)3 phosphors under 980 and 808 nm excitation [J]. J. Alloys Compd., 2017, 709: 147-157. doi: 10.1016/j.jallcom.2017.03.125http://dx.doi.org/10.1016/j.jallcom.2017.03.125
0
浏览量
392
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构