浏览全部资源
扫码关注微信
1.中国科学院长春光学精密机械与物理研究所 发光学及应用国家重点实验室, 吉林 长春 130033
2.中国科学院大学, 北京 100049
[ "杨润(1997-),男,黑龙江哈尔滨人,硕士研究生,2020年于吉林大学获得学士学位,主要从事稀土纳米材料发光性质及其生物功能化的研究。2464189279@qq.com" ]
[ "李齐清(1990-),男,福建福州人,博士,2018年于中国科学院大学获得博士学位,主要从事稀土掺杂上转换纳米发光材料的研究。 E-mail: liqiqing0742@sina.cn" ]
[ "常钰磊(1984-),男,吉林通化人,博士,副研究员,博士生导师,2013年于吉林大学获得博士学位,主要从事光子纳米材料及应用的研究。yuleichang@ciomp.ac.cn" ]
收稿日期:2023-04-19,
修回日期:2023-05-04,
纸质出版日期:2023-09-05
移动端阅览
杨润,陈浩然,涂浪平等.反向能量传递增强Er3+上转换发光[J].发光学报,2023,44(09):1552-1559.
YANG Run,CHEN Haoran,TU Langping,et al.Back Energy Transfer Enhances Er3+ Upconversion Luminescence[J].Chinese Journal of Luminescence,2023,44(09):1552-1559.
杨润,陈浩然,涂浪平等.反向能量传递增强Er3+上转换发光[J].发光学报,2023,44(09):1552-1559. DOI: 10.37188/CJL.20230100.
YANG Run,CHEN Haoran,TU Langping,et al.Back Energy Transfer Enhances Er3+ Upconversion Luminescence[J].Chinese Journal of Luminescence,2023,44(09):1552-1559. DOI: 10.37188/CJL.20230100.
提高上转换发光效率是促进上转换发光材料实际应用的关键。在NaErF
4
@NaYF
4
体系中,惰性NaYF
4
壳层可以抑制高组分Er
3+
掺杂下的发光浓度猝灭,其上转换发光主要来源于Er
3+
⁃Er
3+
的能量传递上转换。本文利用共沉淀法制备了Er
3+
和Yb
3+
分区掺杂的NaErF
4
@NaYbF
4
@NaYF
4
核壳结构的纳米颗粒,通过包覆惰性壳层研究Er
3+
⁃Yb
3+
⁃Er
3+
之间的能量传递和反向能量传递过程。由于808 nm波长只能激发Er
3+
而不能激发Yb
3+
,因此在808 nm波长激发下,Er
3+
在惰性壳层的保护作用下将激发态能量传递给Yb
3+
,随后通过反向能量传递回Er
3+
,使得Er
3+
的上转换发光增强。实验结果发现,当中间层Yb
3+
掺杂浓度为100%时,绿色和红色上转换发光最大增强倍数为24.9和9.79。
Improving the upconversion luminescence efficiency is the key to promoting the practical application of upconversion luminescent materials. In the NaErF
4
@NaYF
4
system, the inert NaYF
4
shell can inhibit the concentration quenching under high Er
3+
doping, and the upconversion luminescence is mainly from the energy transfer upconversion of Er
3+
-Er
3+
. In this paper, Er
3+
and Yb
3+
partition doped NaErF
4
@NaYbF
4
@NaYF
4
core-shell nanoparticles were prepared by the coprecipitation method, and the energy transfer and back energy transfer processes between Er
3+
-Yb
3+
-Er
3+
was studied. Since the 808 nm can only excite Er
3+
but not Yb
3+
, under 808 nm excitation, Er
3+
harvests the pumping energy and transfers it to Yb
3+
and subsequently back to Er
3+
due to the protection offered by NaYF
4
inert outer shell, which finally enhances the upconversion luminescence of Er
3+
. When the doping concentration of Yb
3+
in the intermediate layer is 100%, the maximum enhancement multiple is 24.9 and 9.79 for green and red upconversion, respectively.
DING M Y , CUI S S , FANG L , et al . NIR-I-responsive single-band upconversion emission through energy migration in core-shell-shell nanostructures [J]. Angew. Chem. Int. Ed. , 2022 , 61 ( 29 ): e202203631 . doi: 10.1002/anie.202203631 http://dx.doi.org/10.1002/anie.202203631
RESZCZYŃSKA J , GRZYB T , SOBCZAK J W , et al . Visible light activity of rare earth metal doped (Er 3+ , Yb 3+ or Er 3+ /Yb 3+ ) titania photocatalysts [J]. Appl. Catal. B Environ. , 2015 , 163 : 40 - 49 . doi: 10.1016/j.apcatb.2014.07.010 http://dx.doi.org/10.1016/j.apcatb.2014.07.010
PARNICKA P , MAZIERSKI P , GRZYB T , et al . Influence of the preparation method on the photocatalytic activity of Nd-modified TiO 2 [J]. Beilstein J. Nanotechnol. , 2018 , 9 : 447 - 459 . doi: 10.3762/bjnano.9.43 http://dx.doi.org/10.3762/bjnano.9.43
CHEN Y , CHEN Q , SONG L , et al . Preparation and characterization of encapsulation of europium complex into meso-structured silica monoliths using PEG as the template [J]. Microporous Mesoporous Mater. , 2009 , 122 ( 1-3 ): 7 - 12 . doi: 10.1016/j.micromeso.2008.12.021 http://dx.doi.org/10.1016/j.micromeso.2008.12.021
CAVALLO C , SALLEO A , GOZZI D , et al . Solid solutions of rare earth cations in mesoporous anatase beads and their performances in dye-sensitized solar cells [J]. Scientific Reports , 2015 , 5 : 16785-1 - 15 . doi: 10.1038/srep16785 http://dx.doi.org/10.1038/srep16785
ADHIKARI R , GYAWALI G , CHO S H , et al . Er 3+ /Yb 3+ co-doped bismuth molybdate nanosheets upconversion photocatalyst with enhanced photocatalytic activity [J]. J. Solid State Chem. , 2014 , 209 : 74 - 81 . doi: 10.1016/j.jssc.2013.10.028 http://dx.doi.org/10.1016/j.jssc.2013.10.028
RESZCZYNSKA J , IWULSKA A , SLIWINSKI G , et al . Characterization and photocatalytic activity of rare earth metal-doped titanium dioxide [J]. Physicochem. Probl. Miner. Process. , 2012 , 48 ( 1 ): 201 - 208 .
GRAUEL B , WÜRTH C , HOMANN C , et al . Volume and surface effects on two-photonic and three-photonic processes in dry co-doped upconversion nanocrystals [J]. Nano Res. , 2022 , 15 ( 3 ): 2362 - 2373 . doi: 10.1007/s12274-021-3727-y http://dx.doi.org/10.1007/s12274-021-3727-y
KAISER M , WÜRTH C , KRAFT M , et al . Explaining the influence of dopant concentration and excitation power density on the luminescence and brightness of β-NaYF 4 ∶Yb 3+ ,Er 3+ nanoparticles: measurements and simulations [J]. Nano Res. , 2019 , 12 ( 8 ): 1871 - 1879 . doi: 10.1007/s12274-019-2450-4 http://dx.doi.org/10.1007/s12274-019-2450-4
ZHANG F , WAN Y , SHI Y F , et al . Ordered mesostructured rare-earth fluoride nanowire arrays with upconversion fluorescence [J]. Chem. Mater. , 2008 , 20 ( 11 ): 3778 - 3784 . doi: 10.1021/cm800489e http://dx.doi.org/10.1021/cm800489e
FRENZEL F , WÜRTH C , DUKHNO O , et al . Multiband emission from single β-NaYF 4 (Yb, Er) nanoparticles at high excitation power densities and comparison to ensemble studies [J]. Nano Res. , 2021 , 14 ( 11 ): 4107 - 4115 . doi: 10.1007/s12274-021-3350-y http://dx.doi.org/10.1007/s12274-021-3350-y
CHEN J , GAO Y X , WANG C , et al . Effective regulation of upconversion luminescence in NaErF 4 and NaErF 4 @SiO 2 core-shell particles [J]. Ceram. Int. , 2022 , 48 ( 10 ): 14315 - 14322 . doi: 10.1016/j.ceramint.2022.01.321 http://dx.doi.org/10.1016/j.ceramint.2022.01.321
GAO W , XING Y , CHEN B H , et al . Enhancing red upconversion emission in NaErF 4 @NaYF 4 core-shell nanoparticles by introducing Yb 3+ ions as energy trapping centers [J]. J. Alloys Compd. , 2023 , 936 : 168371 . doi: 10.1016/j.jallcom.2022.168371 http://dx.doi.org/10.1016/j.jallcom.2022.168371
LIU Y F , PAN G C , GAO H P , et al . Single band red emission of Er 3+ ions heavily doped upconversion nanoparticles realized by active-core/active-shell structure [J]. Ceram. Int. , 2021 , 47 ( 13 ): 18824 - 18830 . doi: 10.1016/j.ceramint.2021.03.220 http://dx.doi.org/10.1016/j.ceramint.2021.03.220
LI Q Q , XIE X Y , WU H , et al . Superenhancement photon upconversion nanoparticles for photoactivated nanocryometer [J]. Nano Lett. , 2023 , 23 ( 8 ): 3444 - 3450 . doi: 10.1021/acs.nanolett.3c00495 http://dx.doi.org/10.1021/acs.nanolett.3c00495
禹庭 , 郑成中 , 赵闪闪 , 等 . Monte Carlo模拟在稀土掺杂发光材料能量传递机理研究中的应用进展 [J]. 发光学报 , 2022 , 43 ( 9 ): 1390 - 1404 . doi: 10.37188/cjl.20220188 http://dx.doi.org/10.37188/cjl.20220188
YU T , ZHENG C Z , ZHAO S S , et al . Progress on application of monte carlo simulation in studying energy transfer mechanisms for rare-earth luminescent materials [J]. Chin. J. Lumin. , 2022 , 43 ( 9 ): 1390 - 1404 . (in Chinese) . doi: 10.37188/cjl.20220188 http://dx.doi.org/10.37188/cjl.20220188
ANGELI G K , BATZAVALI D , MAVRONASOU K , et al . Remarkable structural diversity between Zr/Hf and rare-earth MOFs via ligand functionalization and the discovery of unique (4, 8)-c and (4, 12)-connected frameworks [J]. J. Am. Chem. Soc. , 2020 , 142 ( 37 ): 15986 - 15994 . doi: 10.1021/jacs.0c07081 http://dx.doi.org/10.1021/jacs.0c07081
ARTIUSHENKO O , ÁVILA E P , NAZARKOVSKY M , et al . Reusable hydroxamate immobilized silica adsorbent for dispersive solid phase extraction and separation of rare earth metal ions [J]. Sep. Purif. Technol. , 2020 , 231 : 115934-1 - 10 . doi: 10.1016/j.seppur.2019.115934 http://dx.doi.org/10.1016/j.seppur.2019.115934
YAO X T , ZHEN H R , ZHANG D F , et al . Microwave-assisted hydrothermal synthesis of broadband Yb 3+ /Er 3+ co-doped BiOI/Bi 2 O 4 photocatalysts with synergistic effects of upconversion and direct Z-scheme heterojunction [J]. Colloids Surf. A Physicochem. Eng. Aspects , 2022 , 648 : 129276 . doi: 10.1016/j.colsurfa.2022.129276 http://dx.doi.org/10.1016/j.colsurfa.2022.129276
LIAO C , ZHAO X R , JIANG X Y , et al . Hydrothermal fabrication of novel three-dimensional graphene oxide-pentaerythritol composites with abundant oxygen-containing groups as efficient adsorbents [J]. Microchem. J. , 2020 , 152 : 104288-1 - 7 . doi: 10.1016/j.microc.2019.104288 http://dx.doi.org/10.1016/j.microc.2019.104288
SALTON I , IOFFE K , BURSHTEIN T Y , et al . Lanthanoid coordination compounds as diverse self-templating agents towards hierarchically porous Fe-N-C electrocatalysts [J]. Mater. Adv. , 2022 , 3 ( 21 ): 7937 - 7945 . doi: 10.1039/d2ma00596d http://dx.doi.org/10.1039/d2ma00596d
相国涛 , 刘小桐 , 夏清 , 等 . β-NaYF 4 ∶Yb 3+ /Er 3+ @β-NaYF 4 ∶Yb 3+ 的上转换发光特性 [J]. 发光学报 , 2020 , 41 ( 6 ): 679 - 683 . doi: 10.3788/fgxb20204106.0679 http://dx.doi.org/10.3788/fgxb20204106.0679
XIANG G T , LIU X T , XIA Q , et al . Upconversion luminescence properties of β-NaYF 4 ∶Yb 3+ /Er 3+ @β-NaYF 4 ∶Yb 3+ [J]. Chin. J. Lumin. , 2020 , 41 ( 6 ): 679 - 683 . (in Chinese) . doi: 10.3788/fgxb20204106.0679 http://dx.doi.org/10.3788/fgxb20204106.0679
ZHANG Y , XU S , LI X , et al . Concentration quenching of blue upconversion luminescence in Tm 3+ /Yb 3+ co-doped Gd 2 ⁃(WO 4 ) 3 phosphors under 980 and 808 nm excitation [J]. J. Alloys Compd. , 2017 , 709 : 147 - 157 . doi: 10.1016/j.jallcom.2017.03.125 http://dx.doi.org/10.1016/j.jallcom.2017.03.125
0
浏览量
463
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构