浏览全部资源
扫码关注微信
1.山西大学 物理电子工程学院, 山西 太原 030000
2.中国科学院半导体研究所 半导体照明研发中心, 北京 100083
3.山西中科潞安紫外光电科技有限公司, 山西 长治 046000
[ "郭春辉(1998-),男,山西长治人,硕士研究生,2020年于哈尔滨工业大学获得学士学位,主要从事紫外光通信LED制备、优化及性能的研究。E⁃mail: Ch_guo1998@163.com" ]
[ "刘乃鑫(1981-),男,辽宁铁岭人,博士,助理研究员,2009年于中国科学院研究生院获得博士学位,主要从事宽禁带氮化物半导体材料的外延生长及发光器件的研究。E⁃mail: nxliu@semi.ac.cn" ]
纸质出版日期:2023-10-05,
收稿日期:2023-04-17,
修回日期:2023-05-06,
移动端阅览
郭春辉,孙雪娇,郭凯等.紫外光通信用日盲型LED研究进展[J].发光学报,2023,44(10):1849-1861.
GUO Chunhui,SUN Xuejiao,GUO Kai,et al.Recent Progress of Solar Blind Light Emitting Diodes for Ultraviolet Optical Wireless Communication Use[J].Chinese Journal of Luminescence,2023,44(10):1849-1861.
郭春辉,孙雪娇,郭凯等.紫外光通信用日盲型LED研究进展[J].发光学报,2023,44(10):1849-1861. DOI: 10.37188/CJL.20230099.
GUO Chunhui,SUN Xuejiao,GUO Kai,et al.Recent Progress of Solar Blind Light Emitting Diodes for Ultraviolet Optical Wireless Communication Use[J].Chinese Journal of Luminescence,2023,44(10):1849-1861. DOI: 10.37188/CJL.20230099.
紫外光通信在激光雷达、战术通信、航空航天内部安全通讯和片上集成通信等领域有着重要应用前景。传统的紫外光通信LED光源的调制带宽窄、输出光功率低和制造工艺复杂等缺点限制了它在长距离、高速率通信和片上集成通信领域的广泛应用。实验表明,增加单个器件发光面积可提升光输出功率,但增加的器件电容对带宽提升是不利的,因此紫外光通信LED未来的重要研究方向是提升并优化带宽的同时增加器件的光功率密度。UVC Micro⁃LED器件有着光提取效率高、时间常数小、载流子寿命短、调制速率快及工作电流密度高等出色性能,因此在通讯领域受到科研界和工业界的广泛青睐。本文总结了紫外LED、特别是UVC Micro⁃LED的相关研究进展,并重点介绍了它们在光通信及其片上集成互联方面的应用。研究发现,对UVC Micro⁃LED及其阵列制备与性能提升加强研究,是未来提升自由空间和片上互联紫外通信系统性能的最佳解决方案之一。
Ultraviolet communication has extensive applications in laser radar, tactical communication, internal security communication in aerospace plane and on-chip integrated optical communication. Both of the bandwidth and light output power of the traditional deep ultraviolet communication LED were low, and the manufacturing process was complex, which limited their widespread application in long-distance, high-speed communication, and on-chip integrated optical communication fields. Experiments have shown that the increasing of the light emitting area of single device can improve the light output power, but the device capacitance has a negative effect on the bandwidth. Therefore, an important research direction for ultraviolet communication LEDs in the future is to improve the bandwidth and the optical power density of the devices simultaneously. UVC Micro-LEDs with higher light extraction efficiency, lower time constant, shorter carrier lifetime, faster modulated rate and higher current density than traditional LED have been widely favored by the scientific and industrial communities. This paper summarizes the UV LED, especially UVC Micro-LEDs related research progress, and their applications in optical communication and integration on a chip interconnection. It is found that deepening study on the preparation and performance improvement of UVC Micro-LEDs and their arrays will be one of the best solutions for improving the performance of free space and on-chip integrated ultraviolet communication systems in the future.
紫外光通信微尺寸发光二极管调制速率片内集成光通信光提取效率
ultraviolet optical wireless communicationMicro-LEDsmodulated rateon-chip integrated optical communicationlight extraction efficiency
赵太飞, 郭磊. 无线紫外光通信网络技术 [M]. 北京: 科学出版社, 2020.
ZHAO T F, GUO L. Wireless Ultraviolet Communication Network Technology [M]. Beijing: Science Press, 2020. (in Chinese)
VAVOULAS A, SANDALIDIS H G, CHATZIDIAMANTIS N D, et al. A survey on ultraviolet C-Band (UV-C) communications [J]. IEEE Commun. Surv. Tutorials, 2019, 21(3): 2111-2133. doi: 10.1109/comst.2019.2898946http://dx.doi.org/10.1109/comst.2019.2898946
HE X Y, XIE E Y, ISLIM M S, et al. 1 Gbps free-space deep-ultraviolet communications based on III-nitride micro-LEDs emitting at 262 nm [J]. Photonics Res., 2019, 7(7): B41-B47. doi: 10.1364/prj.7.000b41http://dx.doi.org/10.1364/prj.7.000b41
MACLURE D M, MCKENDRY J J D, ISLIM M S, et al. 10 Gbps wavelength division multiplexing using UV-A, UV-B, and UV-C micro-LEDs [J]. Photonics Res., 2022, 10(2): 516-523. doi: 10.1364/prj.445984http://dx.doi.org/10.1364/prj.445984
孙兆田. 基于紫外LED阵列的高速通信系统研究 [D]. 北京: 北京理工大学, 2018.
SUN Z T. Research on High⁃speed Ultraviolet Communication System Based on LED Array [D]. Beijing: Beijing Institute of Technology, 2018. (in Chinese)
GUO L, GUO Y N, WANG J X, et al. Ultraviolet communication technique and its application [J]. J. Semicond., 2021, 42(8): 1-13. doi: 10.1088/1674-4926/42/8/081801http://dx.doi.org/10.1088/1674-4926/42/8/081801
WANG L J. Ultraviolet Communication Network Modeling and Analysis [D]. Riverside: University California at Riverside, 2011.
XU Z Y, SADLER B M. Ultraviolet communications: potential and state-of-the-art [J]. IEEE Commun. Mag., 2008, 46(5): 67-73. doi: 10.1109/mcom.2008.4511651http://dx.doi.org/10.1109/mcom.2008.4511651
KUO S Y, CHANG C J, HUANG Z T, et al. Improvement of light extraction in deep ultraviolet GaN light emitting diodes with mesh P-contacts [J]. Appl. Sci., 2020, 10(17): 5783-1-8. doi: 10.3390/app10175783http://dx.doi.org/10.3390/app10175783
RASHIDI A, NAMI M, MONAVARIAN M, et al. Differential carrier lifetime and transport effects in electrically injected III-nitride light-emitting diodes [J]. J. Appl. Phys., 2017, 122(3): 035706-1-9. doi: 10.1063/1.4994648http://dx.doi.org/10.1063/1.4994648
KOJIMA K, YOSHIDA Y, SHIRAIWA M, et al. Self-organized micro-light-emitting diode structure for high-speed solar-blind optical wireless communications [J]. Appl. Phys. Lett., 2020, 117(3): 031103-1-4. doi: 10.1063/5.0013112http://dx.doi.org/10.1063/5.0013112
李晋闽, 闫建昌, 郭亚楠, 等. 紫外LED研究进展 [J]. 科技导报, 2021, 39(14): 30-41. doi: 10.3981/j.issn.1000-7857.2021.14.003http://dx.doi.org/10.3981/j.issn.1000-7857.2021.14.003
LI J M, YAN J C, GUO Y N, et al. Recent progress of ultraviolet light-emitting diodes [J]. Sci. Technol. Rev., 2021, 39(14): 30-41. (in Chinese). doi: 10.3981/j.issn.1000-7857.2021.14.003http://dx.doi.org/10.3981/j.issn.1000-7857.2021.14.003
KASHIMA Y, MAEDA N, MATSUURA E, et al. High external quantum efficiency (10%) AlGaN-based deep-ultraviolet light-emitting diodes achieved by using highly reflective photonic crystal on p-AlGaN contact layer [J]. Appl. Phys. Express, 2018, 11(1): 012101-1-4. doi: 10.7567/apex.11.012101http://dx.doi.org/10.7567/apex.11.012101
TAKANO T, MINO T, SAKAI J, et al. Deep-ultraviolet light-emitting diodes with external quantum efficiency higher than 20% at 275 nm achieved by improving light-extraction efficiency [J]. Appl. Phys. Express, 2017, 10(3): 031002. doi: 10.7567/apex.10.031002http://dx.doi.org/10.7567/apex.10.031002
ZHANG L, GUO Y N, YAN J C, et al. Deep ultraviolet light-emitting diodes based on a well-ordered AlGaN nanorod array [J]. Photonics Res., 2019, 7(9): B66-B72. doi: 10.1364/prj.7.000b66http://dx.doi.org/10.1364/prj.7.000b66
SHAW G A, SIEGEL A M, MODEL J. Extending the range and performance of non-line-of-sight ultraviolet communication links [C]. Proceedings of SPIE 6231, Unattended Ground, Sea, and Air Sensor Technologies and Applications Ⅷ, Orlando (Kissimmee), United States, 2006: 63210C. doi: 10.1117/12.666194http://dx.doi.org/10.1117/12.666194
KEDER D, ARNON S. Subsea ultraviolet solar-blind broadband free-space optics communication [J]. Opt. Eng., 2009, 48(4): 046001-1-7. doi: 10.1117/1.3120482http://dx.doi.org/10.1117/1.3120482
赵明. 高速率紫外光通信系统接收端研究 [D]. 重庆: 重庆大学, 2010.
ZHAO M. Study on Receiver of High Data Rate Ultraviolet Communication System [D]. Chongqing: Chongqing University, 2010. (in Chinese)
赵太飞, 何华, 柯熙政. 基于日盲紫外光LED的无线光通信性能研究 [J]. 光电子·激光, 2011, 22(12): 1797-1801.
ZHAO T F, HE H, KE X Z. Performance research on wireless optical communication based on solar blind UV LED [J]. J. Optoelectron. <math id="M47"><mi>L</mi><mi>a</mi><mi>s</mi><mi>e</mi><mi>r</mi></math>https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49375148&type=https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49375147&type=6.604000092.28600001, 2011, 22(12): 1797-1801.
HAN D H, LIU Y L, ZHANG K, et al. Theoretical and experimental research on diversity reception technology in NLOS UV communication system [J]. Opt. Express, 2012, 20(14): 15833-15842. doi: 10.1364/oe.20.015833http://dx.doi.org/10.1364/oe.20.015833
WU M L, HAN D H, ZHANG X, et al. Experimental research and comparison of LDPC and RS channel coding in ultraviolet communication systems [J]. Opt. Express, 2014, 22(5): 5422-5430. doi: 10.1364/oe.22.005422http://dx.doi.org/10.1364/oe.22.005422
GUO L, MENG D D, LIU K L, et al. Experimental research on the MRC diversity reception algorithm for UV communication [J]. Appl. Opt., 2015, 54(16): 5050-5056. doi: 10.1364/ao.54.005050http://dx.doi.org/10.1364/ao.54.005050
黄刚, 唐义, 黄河清, 等. 全向紫外光通信技术研究 [J]. 北京理工大学学报, 2015, 35(4): 409-413.
HUANG G, TANG Y, HUANG H Q, et al. Study of Omni-directional ultraviolet communication [J]. Trans. Beijing Inst. Technol., 2015, 35(4): 409-413. (in Chinese)
罗易雪. 紫外通信信道特性研究以及语音通信平台搭建 [D]. 上海: 中国科学院上海技术物理研究所, 2014.
LUO Y X. Study on the Characteristics of Propagation of Ultraviolet Communication System and Voice Communication Platform Building [D]. Shanghai: Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 2014. (in Chinese)
SUN X B, ZHANG Z Y, CHAABAN A, et al. 71-Mbit/s ultraviolet-B LED communication link based on 8-QAM-OFDM modulation [J]. Opt. Express, 2017, 25(19): 23267-23274. doi: 10.1364/oe.25.023267http://dx.doi.org/10.1364/oe.25.023267
KOJIMA K, YOSHIDA Y, SHIRAIWA M, et al. 1.6-Gbps LED-based ultraviolet communication at 280 nm in direct sunlight [C]. Proceedings of 2018 European Conference on Optical Communication, Rome Italy, 2018: 1-3. doi: 10.1109/ecoc.2018.8535544http://dx.doi.org/10.1109/ecoc.2018.8535544
ALKHAZRAGI O, HU F C, ZOU P, et al. 2.4-Gbps ultraviolet-C solar-blind communication based on probabilistically shaped DMT modulation [C]. Proceedings of 2020 Optical Fiber Communications Conference and Exhibition, San Diego, USA, 2020: 1-3. doi: 10.1364/ofc.2020.m3i.5http://dx.doi.org/10.1364/ofc.2020.m3i.5
ALKHAZRAGI O, HU F C, ZOU P, et al. Gbit/s ultraviolet-C diffuse-line-of-sight communication based on probabilistically shaped DMT and diversity reception [J]. Opt. Express, 2020, 28(7): 9111-9122. doi: 10.1364/oe.389262http://dx.doi.org/10.1364/oe.389262
TIAN P F, SHAN X Y, ZHU S J, et al. AlGaN ultraviolet Micro-LEDs [J]. IEEE J. Quant. Electron., 2022, 58(4): 3300214-1-14. doi: 10.1109/jqe.2022.3159854http://dx.doi.org/10.1109/jqe.2022.3159854
LI D, LIU S F, QIAN Z Y, et al. Deep-ultraviolet micro-LEDs exhibiting high output power and high modulation bandwidth simultaneously [J]. Adv. Mater., 2022, 34(19): 2109765-1-10. doi: 10.1002/adma.202109765http://dx.doi.org/10.1002/adma.202109765
王轩. 氮化镓基Micro⁃LED的制备及其可见光通信性能研究 [D]. 南京: 南京大学, 2021.
WANG X. Preparation of GaN⁃based Micro⁃LEDs and Their Visible Light Communication Performance [D]. Nanjing: Nanjing University, 2021. (in Chinese)
HE X Y, XIE E Y, ISLIM M S, et al. 1 Gbps free-space deep-ultraviolet communications based on III-nitride micro-LEDs emitting at 262 nm [J]. Photonics Res., 2019, 7(7): B41-B47. doi: 10.1364/prj.7.000b41http://dx.doi.org/10.1364/prj.7.000b41
LI D, LIU S F, QIAN Z Y, et al. Deep-ultraviolet micro-LEDs exhibiting high output power and high modulation bandwidth simultaneously [J]. Adv. Mater., 2022, 34(19): 2109765-1-10. doi: 10.1002/adma.202109765http://dx.doi.org/10.1002/adma.202109765
MACLURE D M, MCKENDRY J J D, HERRNSDORF J, et al. Size-dependent characterization of deep UV micro-light-emitting diodes [C]. Proceedings of 2020 IEEE Photonics Conference, Vancouver, BC, Canada, 2020: 1-2. doi: 10.1109/ipc47351.2020.9252420http://dx.doi.org/10.1109/ipc47351.2020.9252420
FLOYD R, GAEVSKI M, ALAM D, et al. An opto-thermal study of high brightness 280 nm emission AlGaN micropixel light-emitting diode arrays [J]. Appl. Phys. Express, 2021, 14(1): 014002-1-7. doi: 10.35848/1882-0786/abd140http://dx.doi.org/10.35848/1882-0786/abd140
TIAN M, YU H B, MEMON M H, et al. Enhanced light extraction of the deep-ultraviolet micro-LED via rational design of chip sidewall [J]. Opt. Lett., 2021, 46(19): 4809-4812. doi: 10.1364/ol.441285http://dx.doi.org/10.1364/ol.441285
FLOYD R, GAEVSKI M, HUSSAIN K, et al. Enhanced light extraction efficiency of micropixel geometry AlGaN DUV light-emitting diodes [J]. Appl. Phys. Express, 2021, 14(8): 084002-1-5. doi: 10.35848/1882-0786/ac0fb8http://dx.doi.org/10.35848/1882-0786/ac0fb8
YU H B, MEMON M H, WANG D H, et al. AlGaN-based deep ultraviolet micro-LED emitting at 275 nm [J]. Opt. Lett., 2021, 46(13): 3271-3274. doi: 10.1364/ol.431933http://dx.doi.org/10.1364/ol.431933
郭海峰, 哈斯花, 朱俊. 外电场下应变量子阱中电子与空穴的本征态 [J]. 发光学报, 2010, 31(6): 870-876. doi: 10.3724/SP.J.1187.2010.00969http://dx.doi.org/10.3724/SP.J.1187.2010.00969
GUO H F, HA S H, ZHU J. Eigen-states of electron and hole in strained quantum well under external electric field [J]. Chin. J. Lumin., 2010, 31(6): 870-876. (in Chinese). doi: 10.3724/SP.J.1187.2010.00969http://dx.doi.org/10.3724/SP.J.1187.2010.00969
CHITNIS A, SUN J, MANDAVILLI V, et al. Self-heating effects at high pump currents in deep ultraviolet light-emitting diodes at 324 nm [J]. Appl. Phys. Lett., 2002, 81(18): 3491-3493. doi: 10.1063/1.1518155http://dx.doi.org/10.1063/1.1518155
GUO L, GUO Y N, YANG J K, et al. 275 nm Deep ultraviolet AlGaN-based micro-LED arrays for ultraviolet communication [J]. IEEE Photonics J., 2022, 14(1): 8202905-1-5. doi: 10.1109/jphot.2021.3129648http://dx.doi.org/10.1109/jphot.2021.3129648
FENG F, LIU Y B, ZHANG K, et al. Enhancing the optical and electrical properties of AlGaN ultraviolet-C micro-LED via a hybrid scheme of plasma and chemical treatment [J]. Appl. Phys. Lett., 2022, 121(22): 221104-1-6. doi: 10.1063/5.0123409http://dx.doi.org/10.1063/5.0123409
QIAN Z Y, ZHU S J, SHAN X Y, et al. Analysis of the efficiency improvement of 273 nm AlGaN UV-C micro-LEDs [J]. J. Phys. D: Appl. Phys., 2022, 55(19): 195104-1-6. doi: 10.1088/1361-6463/ac4e33http://dx.doi.org/10.1088/1361-6463/ac4e33
ZHU S J, QIU P J, QIAN Z Y, et al. 2 Gbps free-space ultraviolet-C communication based on a high-bandwidth micro-LED achieved with pre-equalization [J]. Opt. Lett., 2021, 46(9): 2147-2150. doi: 10.1364/ol.423311http://dx.doi.org/10.1364/ol.423311
YU H B, MEMON M H, JIA H F, et al. A 10×10 deep ultraviolet light-emitting micro-LED array [J]. J. Semicond., 2022, 43(6): 062801-1-6. doi: 10.1088/1674-4926/43/6/062801http://dx.doi.org/10.1088/1674-4926/43/6/062801
谭毅, 庄永漳, 卢子元, 等. 基于离子注入制备的InGaN横向Micro-LED阵列 [J]. 发光学报, 2021, 42(2): 215-222. doi: 10.37188/cjl.20200355http://dx.doi.org/10.37188/cjl.20200355
TAN Y, ZHUANG Y Z, LU Z Y, et al. InGaN-based lateral-structured Micro-LED array fabricated by ion implantation [J]. Chin. J. Lumin., 2021, 42(2): 215-222. (in Chinese). doi: 10.37188/cjl.20200355http://dx.doi.org/10.37188/cjl.20200355
MCKENDRY J J D, XIE E Y, ISLIM M S, et al. 4 Gbps wireless optical communications up to 5 m using a UV-C micro-light-emitting diode array [C]. Proceedings of 2021 IEEE Photonics Conference, Vancouver, BC, Canada, 2021: 1-2. doi: 10.1109/ipc48725.2021.9593005http://dx.doi.org/10.1109/ipc48725.2021.9593005
MACLURE D M, MCKENDRY J J D, CHEN C, et al. Gb/s optical wireless communications up to 17 meters using a UV-C micro-light-emitting diode [C]. Proceedings of 2022 IEEE Photonics Conference, Vancouver, BC, Canada, 2022: 1-2. doi: 10.1109/ipc53466.2022.9975654http://dx.doi.org/10.1109/ipc53466.2022.9975654
蒋林, 谢晓燕. 片内光通信技术综述 [J]. 通信技术, 2008, 41(11): 69-71. doi: 10.3969/j.issn.1002-0802.2008.11.025http://dx.doi.org/10.3969/j.issn.1002-0802.2008.11.025
JIANG L, XIE X Y. A survey of on-chip optical communication [J]. Commun. Technol., 2008, 41(11): 69-71. (in Chinese). doi: 10.3969/j.issn.1002-0802.2008.11.025http://dx.doi.org/10.3969/j.issn.1002-0802.2008.11.025
WU M L, HAN D H, ZHANG X, et al. Experimental research and comparison of LDPC and RS channel coding in ultraviolet communication systems [J]. Opt. Express, 2014, 22(5): 5422-5430. doi: 10.1364/oe.22.005422http://dx.doi.org/10.1364/oe.22.005422
HE R, WANG L L, CHEN R F, et al. Monolithically integrated photonic chips with asymmetric MQWs structure for suppressing Stokes shift [J]. Appl. Phys. Lett., 2023, 122(2): 021105-1-6. doi: 10.1063/5.0131115http://dx.doi.org/10.1063/5.0131115
SHAKYA J, KNABE K, KIM K H, et al. Polarization of III-nitride blue and ultraviolet light-emitting diodes [J]. Appl. Phys. Lett., 2005, 86(9): 091107-1-3. doi: 10.1063/1.1875751http://dx.doi.org/10.1063/1.1875751
KAWANISHI H, SENUMA M, NUKUI T. TM-mode lasing and anisotropic polarization properties of AlGaN multiple quantum well lasers in deep-ultraviolet spectral region [C]. Proceedings of SPIE 6473, Gallium Nitride Materials and Devices II, San Jose, California, United States, 2007: 64731D. doi: 10.1117/12.698513http://dx.doi.org/10.1117/12.698513
HE R, LIU N X, GAO Y Q, et al. Monolithically integrated UVC AlGaN-based multiple quantum wells structure and photonic chips for solar-blind communications [J]. Nano Energy, 2022, 104: 107928-1-9. doi: 10.1016/j.nanoen.2022.107928http://dx.doi.org/10.1016/j.nanoen.2022.107928
NORTHRUP J E, CHUA C L, YANG Z, et al. Effect of strain and barrier composition on the polarization of light emission from AlGaN/AlN quantum wells [J]. Appl. Phys. Lett., 2012, 100(2): 021101-1-4. doi: 10.1063/1.3675451http://dx.doi.org/10.1063/1.3675451
YUAN J L, JIANG Y, SHI Z, et al. 286 nm monolithic multicomponent system [J]. Jpn. J. Appl. Phys., 2019, 58(1): 010909-1-5. doi: 10.7567/1347-4065/aaf3aahttp://dx.doi.org/10.7567/1347-4065/aaf3aa
LYU Q F, JIANG H X, LAU K M. High gain and high ultraviolet/visible rejection ratio photodetectors using p-GaN/AlGaN/GaN heterostructures grown on Si [J]. Appl. Phys. Lett., 2020, 117(7): 071101-1-5. doi: 10.1063/5.0011685http://dx.doi.org/10.1063/5.0011685
LYU Q F, JIANG H X, LAU K M, et al. Monolithic integration of ultraviolet light emitting diodes and photodetectors on a P-GaN/AlGaN/GaN/Si platform [J]. Opt. Express, 2021, 29(6): 8358-8364. doi: 10.1364/oe.418843http://dx.doi.org/10.1364/oe.418843
FLOYD R, HUSSAIN K, MAMUN A, et al. Photonics integrated circuits using AlxGa1-xN based UVC light-emitting diodes, photodetectors and waveguides [J]. Appl. Phys. Express, 2020, 13(2): 022003-1-4. doi: 10.7567/1882-0786/ab6410http://dx.doi.org/10.7567/1882-0786/ab6410
SHAN X Y, ZHU S J, QIU P J, et al. Multifunctional ultraviolet-C micro-LED with monolithically integrated photodetector for optical wireless communication [J]. J. Lightwave Technol., 2022, 40(2): 490-498. doi: 10.1109/jlt.2021.3115167http://dx.doi.org/10.1109/jlt.2021.3115167
JIANG Z Y, ATALLA M R M, YOU G J, et al. Monolithic integration of nitride light emitting diodes and photodetectors for bi-directional optical communication [J]. Opt. Lett., 2014, 39(19): 5657-5660. doi: 10.1364/ol.39.005657http://dx.doi.org/10.1364/ol.39.005657
ZHAN J L, CHEN Z Z, JIAO Q Q, et al. Investigation on strain relaxation distribution in GaN-based μLEDs by Kelvin probe force microscopy and micro-photoluminescence [J]. Opt. Express, 2018, 26(5): 5265-5274. doi: 10.1364/oe.26.005265http://dx.doi.org/10.1364/oe.26.005265
0
浏览量
528
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构