浏览全部资源
扫码关注微信
1.厦门大学 分子疫苗学与分子诊断学国家重点实验室, 分子影像暨转化医学研究中心, 福建 厦门 361102
2.南京邮电大学 有机电子与信息显示国家重点实验室, 信息材料与纳米技术研究院, 江苏 南京 210023
[ "景靳彭(1997-),男,天津人,硕士研究生,2019年于南开大学获得学士学位,主要从事近红外二区荧光探针的合成及生物应用的研究。passion_coffee@163.com " ]
[ "陈洪敏(1982-),山东日照人,博士,教授,博士生导师,2009年于中国科学院理化技术研究所获得博士学位,主要从事分子影像和纳米医学领域的研究。 E-mail: hchen@xmu.edu.cn" ]
纸质出版日期:2023-09-05,
收稿日期:2023-04-13,
修回日期:2023-05-06,
移动端阅览
景靳彭,陈世棱,王宗樟等.基于苯并噻二唑结构的近红外二区有机小分子在生物成像和治疗中的研究进展[J].发光学报,2023,44(09):1667-1680.
JING Jinpeng,CHEN Shileng,WANG Zongzhang,et al.Advances of NIR-Ⅱ Small Organic Molecules in Bioimaging and Therapy Based on Benzothiadiazole Structure[J].Chinese Journal of Luminescence,2023,44(09):1667-1680.
景靳彭,陈世棱,王宗樟等.基于苯并噻二唑结构的近红外二区有机小分子在生物成像和治疗中的研究进展[J].发光学报,2023,44(09):1667-1680. DOI: 10.37188/CJL.20230075.
JING Jinpeng,CHEN Shileng,WANG Zongzhang,et al.Advances of NIR-Ⅱ Small Organic Molecules in Bioimaging and Therapy Based on Benzothiadiazole Structure[J].Chinese Journal of Luminescence,2023,44(09):1667-1680. DOI: 10.37188/CJL.20230075.
基于光子反射、散射和自发荧光的减弱,近红外二区窗口能够实现高分辨率和信噪比的生物荧光成像,在各种生物医学应用中发挥着重要作用。构建供体⁃受体⁃供体结构是设计近红外二区有机小分子的有效方法,基于苯并噻二唑结构的近红外二区有机小分子不仅能够实现光学成像,还能利用光激活的激发态能量转换实现光学治疗。本文总结了基于苯并双噻二唑(Benzobisthiadiazole,BBT)和[1,2,5]噻二唑[3,4‑g]喹喔啉([1,2,5]thiadiazolo[3,4⁃g]quinoxaline,TQ)结构的近红外二区有机小分子在生物成像和成像引导的治疗中的研究进展,并对未来近红外二区有机小分子的设计和应用进行了展望。
Based on the reduction of photon reflection, scattering and spontaneous fluorescence, NIR-Ⅱ window enables high resolution and signal-to-noise ratio biofluorescence imaging, which plays an important role in a variety of biomedical applications. The construction of donor-acceptor-donor structure is an effective method for the design of NIR-Ⅱ small organic molecules. NIR-Ⅱ small organic molecules based on benzothiadiazole structure can not only realize optical imaging, but also realize phototherapeutics by utilizing the light-activated excited state energy conversion. This review summarizes the research advances of NIR-Ⅱ small organic molecules based on benzobisthiadiazole (BBT) and [1,2,5]thiadiazolo[3,4-g]quinoxaline (TQ) in bioimaging and image-guided therapy, and prospects of the design and application of NIR-Ⅱ small organic molecules in the future are presented.
近红外二区苯并噻二唑生物成像光学治疗
NIR-Ⅱbenzothiadiazolebioimagingphototherapeutics
WEISSLEDER R, PITTET M J. Imaging in the era of molecular oncology [J]. Nature, 2008, 452(7187): 580-589. doi: 10.1038/nature06917http://dx.doi.org/10.1038/nature06917
HONG G S, ANTARIS A L, DAI H J. Near-infrared fluorophores for biomedical imaging [J]. Nat. Biomed. Eng., 2017, 1(1): 0010. doi: 10.1038/s41551-016-0010http://dx.doi.org/10.1038/s41551-016-0010
CHEN Y, WANG S F, ZHANG F. Near-infrared luminescence high-contrast in vivo biomedical imaging [J]. Nat. Rev. Bioeng., 2023, 1(1): 60-78. doi: 10.1038/s44222-022-00002-8http://dx.doi.org/10.1038/s44222-022-00002-8
WANDERI K, CUI Z Q. Organic fluorescent nanoprobes with NIR-Ⅱb characteristics for deep learning [J]. Exploration, 2022, 2(2): 20210097. doi: 10.1002/exp.20210097http://dx.doi.org/10.1002/exp.20210097
LI C Y, CHEN G C, ZHANG Y J, et al. Advanced fluorescence imaging technology in the near-infrared-II window for biomedical applications [J]. J. Am. Chem. Soc., 2020, 142(35): 14789-14804. doi: 10.1021/jacs.0c07022http://dx.doi.org/10.1021/jacs.0c07022
HE S Q, SONG J, QU J L, et al. Crucial breakthrough of second near-infrared biological window fluorophores: design and synthesis toward multimodal imaging and theranostics [J]. Chem. Soc. Rev., 2018, 47(12): 4258-4278. doi: 10.1039/c8cs00234ghttp://dx.doi.org/10.1039/c8cs00234g
YANG Y J, TU D T, ZHANG Y Q, et al. Recent advances in design of lanthanide-containing NIR-Ⅱ luminescent nanoprobes [J]. iScience, 2021, 24(2): 102062. doi: 10.1016/j.isci.2021.102062http://dx.doi.org/10.1016/j.isci.2021.102062
HAUCK T S, ANDERSON R E, FISCHER H C, et al. In vivo quantum-dot toxicity assessment [J]. Small, 2010, 6(1): 138-144. doi: 10.1002/smll.200900626http://dx.doi.org/10.1002/smll.200900626
CHEN H, DONG B L, TANG Y H, et al. A unique “integration” strategy for the rational design of optically tunable near-infrared fluorophores [J]. Acc. Chem. Res., 2017, 50(6): 1410-1422. doi: 10.1021/acs.accounts.7b00087http://dx.doi.org/10.1021/acs.accounts.7b00087
ZHONG D N, CHEN W Y, XIA Z M, et al. Aggregation-induced emission luminogens for image-guided surgery in non-human primates [J]. Nat. Commun., 2021, 12(1): 6485. doi: 10.1038/s41467-021-26417-2http://dx.doi.org/10.1038/s41467-021-26417-2
NG K K, ZHENG G. Molecular interactions in organic nanoparticles for phototheranostic applications [J]. Chem. Rev., 2015, 115(19): 11012-11042. doi: 10.1021/acs.chemrev.5b00140http://dx.doi.org/10.1021/acs.chemrev.5b00140
HU R R, LAGER E, AGUILAR-AGUILAR A, et al. Twisted intramolecular charge transfer and aggregation-induced emission of BODIPY derivatives [J]. J. Phys. Chem. C, 2009, 113(36): 15845-15853. doi: 10.1021/jp902962hhttp://dx.doi.org/10.1021/jp902962h
GRABOWSKI Z R, ROTKIEWICZ K, RETTIG W. Structural changes accompanying intramolecular electron transfer: focus on twisted intramolecular charge-transfer states and structures [J]. Chem. Rev., 2003, 103(10): 3899-4031. doi: 10.1021/cr940745lhttp://dx.doi.org/10.1021/cr940745l
SASAKI S, DRUMMEN G P C, KONISHI G I. Recent advances in twisted intramolecular charge transfer (TICT) fluorescence and related phenomena in materials chemistry [J]. J. Mater. Chem. C, 2016, 4(14): 2731-2743. doi: 10.1039/c5tc03933ahttp://dx.doi.org/10.1039/c5tc03933a
LEI Z H, ZHANG F. Molecular engineering of NIR-Ⅱ fluorophores for improved biomedical detection [J]. Angew. Chem. Int. Ed. Engl., 2021, 60(30): 16294-16308. doi: 10.1002/anie.202007040http://dx.doi.org/10.1002/anie.202007040
ZHOU W, DU M Z, WANG J H, et al. Organic nanomaterials for near-infrared light-triggered photothermal/thermodynamic combination therapy [J]. Dyes Pigm., 2022, 205: 110499. doi: 10.1016/j.dyepig.2022.110499http://dx.doi.org/10.1016/j.dyepig.2022.110499
XIE C, ZHOU W, ZENG Z L, et al. Grafted semiconducting polymer amphiphiles for multimodal optical imaging and combination phototherapy [J]. Chem. Sci., 2020, 11(39): 10553-10570. doi: 10.1039/d0sc01721chttp://dx.doi.org/10.1039/d0sc01721c
LUCKY S S, SOO K C, ZHANG Y. Nanoparticles in photodynamic therapy [J]. Chem. Rev., 2015, 115(4): 1990-2042. doi: 10.1021/cr5004198http://dx.doi.org/10.1021/cr5004198
TAN Y H, LIU P Y, LI D X, et al. NIR-Ⅱ aggregation-induced emission luminogens for tumor phototheranostics [J]. Biosensors, 2022, 12(1): 46. doi: 10.3390/bios12010046http://dx.doi.org/10.3390/bios12010046
XU X X, LU H X, LEE R. Near infrared light triggered photo/immuno-therapy toward cancers [J]. Front. Bioeng. Biotechnol., 2020, 8: 488. doi: 10.3389/fbioe.2020.00488http://dx.doi.org/10.3389/fbioe.2020.00488
WANG Z T, MENG Q Q, LI S S. The role of NIR fluorescence in MDR cancer treatment: from targeted imaging to phototherapy [J]. Curr. Med. Chem., 2020, 27(33): 5510-5529. doi: 10.2174/0929867326666190627123719http://dx.doi.org/10.2174/0929867326666190627123719
ZHOU B, HU Z B, JIANG Y R, et al. Theoretical exploitation of acceptors based on benzobis(thiadiazole) and derivatives for organic NIR-Ⅱ fluorophores [J]. Phys. Chem. Chem. Phys., 2018, 20(30): 19759-19767. doi: 10.1039/c8cp03135ehttp://dx.doi.org/10.1039/c8cp03135e
KIRCHER M F, WILLMANN J K. Molecular body imaging: MR imaging, CT, and US. Part I. principles [J]. Radiology, 2012, 263(3): 633-643. doi: 10.1148/radiol.12102394http://dx.doi.org/10.1148/radiol.12102394
SABA L, SANFILIPPO R, MONTISCI R, et al. Carotid artery wall thickness: comparison between sonography and multi-detector row CT angiography [J]. Neuroradiology, 2010, 52(2): 75-82. doi: 10.1007/s00234-009-0589-5http://dx.doi.org/10.1007/s00234-009-0589-5
ANTARIS A L, CHEN H, CHENG K, et al. A small-molecule dye for NIR-Ⅱ imaging [J]. Nat. Mater., 2016, 15(2): 235-242. doi: 10.1038/nmat4476http://dx.doi.org/10.1038/nmat4476
ANTARIS A L, CHEN H, DIAO S, et al. A high quantum yield molecule-protein complex fluorophore for near-infrared II imaging [J]. Nat. Commun., 2017, 8: 15269. doi: 10.1038/ncomms15269http://dx.doi.org/10.1038/ncomms15269
YANG Q L, MA Z R, WANG H S, et al. Rational design of molecular fluorophores for biological imaging in the NIR-Ⅱ window [J]. Adv. Mater., 2017, 29(12): 1605497. doi: 10.1002/adma.201605497http://dx.doi.org/10.1002/adma.201605497
LA D D, BHOSALE S V, JONES L A, et al. Tetraphenylethylene-based AIE-active probes for sensing applications [J]. ACS Appl. Mater. Interfaces, 2018, 10(15): 12189-12216. doi: 10.1021/acsami.7b12320http://dx.doi.org/10.1021/acsami.7b12320
LI K, LIU B. Polymer-encapsulated organic nanoparticles for fluorescence and photoacoustic imaging [J]. Chem. Soc. Rev., 2014, 43(18): 6570-6597. doi: 10.1039/c4cs00014ehttp://dx.doi.org/10.1039/c4cs00014e
LIANG J, TANG B Z, LIU B. Specific light-up bioprobes based on AIEgen conjugates [J]. Chem. Soc. Rev., 2015, 44(10): 2798-2811. doi: 10.1039/c4cs00444bhttp://dx.doi.org/10.1039/c4cs00444b
SHENG Z H, GUO B, HU D H, et al. Bright aggregation-induced-emission dots for targeted synergetic NIR-Ⅱ fluorescence and NIR-I photoacoustic imaging of orthotopic brain tumors [J]. Adv. Mater., 2018, 30(29): 1800766. doi: 10.1002/adma.201800766http://dx.doi.org/10.1002/adma.201800766
FANG Y, SHANG J Z, LIU D K, et al. Design, synthesis, and application of a small molecular NIR-Ⅱ fluorophore with maximal emission beyond 1 200 nm [J]. J. Am. Chem. Soc., 2020, 142(36): 15271-15275. doi: 10.1021/jacs.0c08187http://dx.doi.org/10.1021/jacs.0c08187
ZHANG X D, WANG H S, ANTARIS A L, et al. Traumatic brain injury imaging in the second near-infrared window with a molecular fluorophore [J]. Adv. Mater., 2016, 28(32): 6872-6879. doi: 10.1002/adma.201600706http://dx.doi.org/10.1002/adma.201600706
SHOU K Q, QU C R, SUN Y, et al. Multifunctional biomedical imaging in physiological and pathological conditions using a NIR-Ⅱ probe [J]. Adv. Funct. Mater., 2017, 27(23): 1700995. doi: 10.1002/adfm.201700995http://dx.doi.org/10.1002/adfm.201700995
LIU S J, CHEN C, LI Y Y, et al. Constitutional isomerization enables bright NIR-Ⅱ AIEgen for brain-inflammation imaging [J]. Adv. Funct. Mater., 2020, 30(7): 1908125. doi: 10.1002/adfm.201908125http://dx.doi.org/10.1002/adfm.201908125
YANG Y L, WANG S F, LU L F, et al. NIR-Ⅱ chemiluminescence molecular sensor for in vivo high-contrast inflammation imaging [J]. Angew. Chem. Int. Ed. Engl., 2020, 59(42): 18380-18385. doi: 10.1002/anie.202007649http://dx.doi.org/10.1002/anie.202007649
SHEN H C, SUN F Y, ZHU X Y, et al. Rational design of NIR-Ⅱ AIEgens with ultrahigh quantum yields for photo- and chemiluminescence imaging [J]. J. Am. Chem. Soc., 2022, 144(33): 15391-15402. doi: 10.1021/jacs.2c07443http://dx.doi.org/10.1021/jacs.2c07443
WAN H, MA H L, ZHU S J, et al. Developing a bright NIR-Ⅱ fluorophore with fast renal excretion and its application in molecular imaging of immune checkpoint PD-L1 [J]. Adv. Funct. Mater., 2018, 28(50): 1804956. doi: 10.1002/adfm.201804956http://dx.doi.org/10.1002/adfm.201804956
ALIFU N, ZEBIBULA A, QI J, et al. Single-molecular near-infrared-II theranostic systems: ultrastable aggregation-induced emission nanoparticles for long-term tracing and efficient photothermal therapy [J]. ACS Nano, 2018, 12(11): 11282-11293. doi: 10.1021/acsnano.8b05937http://dx.doi.org/10.1021/acsnano.8b05937
WANG J F, LIU Y S, MORSCH M, et al. Brain-targeted aggregation-induced-emission nanoparticles with near-infrared imaging at 1 550 nm boosts orthotopic glioblastoma theranostics [J]. Adv. Mater., 2022, 34(5): 2106082. doi: 10.1002/adma.202106082http://dx.doi.org/10.1002/adma.202106082
ZENG S, GAO H Q, LI C, et al. Boosting photothermal theranostics via TICT and molecular motions for photohyperthermia therapy of muscle-invasive bladder cancer [J]. Adv. Healthc. Mater., 2021, 10(24): 2101063. doi: 10.1002/adhm.202101063http://dx.doi.org/10.1002/adhm.202101063
KOBAYASHI H, OGAWA M, ALFORD R, et al. New strategies for fluorescent probe design in medical diagnostic imaging [J]. Chem. Rev., 2010, 110(5): 2620-2640. doi: 10.1021/cr900263jhttp://dx.doi.org/10.1021/cr900263j
SMITH B R, GAMBHIR S S. Nanomaterials for in vivo imaging [J]. Chem. Rev., 2017, 117(3): 901-986. doi: 10.1021/acs.chemrev.6b00073http://dx.doi.org/10.1021/acs.chemrev.6b00073
ZHAO X Z, LONG S R, LI M L, et al. Oxygen-dependent regulation of excited-state deactivation process of rational photosensitizer for smart phototherapy [J]. J. Am. Chem. Soc., 2020, 142(3): 1510-1517. doi: 10.1021/jacs.9b11800http://dx.doi.org/10.1021/jacs.9b11800
WANG W T, WU F, ZHANG Q C, et al. Aggregation-induced emission nanoparticles for single near-infrared light-triggered photodynamic and photothermal antibacterial therapy [J]. ACS Nano, 2022, 16(5): 7961-7970. doi: 10.1021/acsnano.2c00734http://dx.doi.org/10.1021/acsnano.2c00734
WANG M, YAN D Y, WANG M, et al. A versatile 980 nm absorbing aggregation-induced emission luminogen for NIR-Ⅱ imaging-guided synergistic photo-immunotherapy against advanced pancreatic cancer [J]. Adv. Funct. Mater., 2022, 32(36): 2205371. doi: 10.1002/adfm.202205371http://dx.doi.org/10.1002/adfm.202205371
JIANG R M, DAI J, DONG X Q, et al. Improving image-guided surgical and immunological tumor treatment efficacy by photothermal and photodynamic therapies based on a multifunctional NIR AIEgen [J]. Adv. Mater., 2021, 33(22): 2101158. doi: 10.1002/adma.202101158http://dx.doi.org/10.1002/adma.202101158
RAY P C. Size and shape dependent second order nonlinear optical properties of nanomaterials and their application in biological and chemical sensing [J]. Chem. Rev., 2010, 110(9): 5332-5365. doi: 10.1021/cr900335qhttp://dx.doi.org/10.1021/cr900335q
PARK Y I, LEE K T, SUH Y D, et al. Upconverting nanoparticles: a versatile platform for wide-field two-photon microscopy and multi-modal in vivo imaging [J]. Chem. Soc. Rev., 2015, 44(6): 1302-1317. doi: 10.1039/c4cs00173ghttp://dx.doi.org/10.1039/c4cs00173g
QI J, SUN C W, LI D Y, et al. Aggregation-induced emission luminogen with near-infrared-ii excitation and near-infrared-i emission for ultradeep intravital two-photon microscopy [J]. ACS Nano, 2018, 12(8): 7936-7945.
WANG S W, LIU J, GOH C C, et al. NIR-Ⅱ-excited intravital two-photon microscopy distinguishes deep cerebral and tumor vasculatures with an ultrabright NIR-Ⅰ AIE luminogen [J]. Adv. Mater., 2019, 31(44): 1904447. doi: 10.1002/adma.201904447http://dx.doi.org/10.1002/adma.201904447
JI A Y, LOU H Y, QU C R, et al. Acceptor engineering for NIR-Ⅱ dyes with high photochemical and biomedical performance [J]. Nat. Commun., 2022, 13(1): 3815. doi: 10.1038/s41467-022-31521-yhttp://dx.doi.org/10.1038/s41467-022-31521-y
CHEN J J, CHEN L Q, WU Y L, et al. A H2O2-activatable nanoprobe for diagnosing interstitial cystitis and liver ischemia-reperfusion injury via multispectral optoacoustic tomography and NIR-Ⅱ fluorescent imaging [J]. Nat. Commun., 2021, 12(1): 6870. doi: 10.1038/s41467-021-27233-4http://dx.doi.org/10.1038/s41467-021-27233-4
WANG P Y, FAN Y, LU L F, et al. NIR-Ⅱ nanoprobes in⁃vivo assembly to improve image-guided surgery for metastatic ovarian cancer [J]. Nat. Commun., 2018, 9(1): 2898. doi: 10.1038/s41467-018-05113-8http://dx.doi.org/10.1038/s41467-018-05113-8
JIA R Z, XU H, WANG C L, et al. NIR-Ⅱ emissive AIEgen photosensitizers enable ultrasensitive imaging-guided surgery and phototherapy to fully inhibit orthotopic hepatic tumors [J]. J. Nanobiotechnol., 2021, 19(1): 419. doi: 10.1186/s12951-021-01168-whttp://dx.doi.org/10.1186/s12951-021-01168-w
GAO H Q, DUAN X C, JIAO D, et al. Boosting photoacoustic effect via intramolecular motions amplifying thermal-to-acoustic conversion efficiency for adaptive image-guided cancer surgery [J]. Angew. Chem. Int. Ed. Engl., 2021, 60(38): 21047-21055. doi: 10.1002/anie.202109048http://dx.doi.org/10.1002/anie.202109048
CHEN S Y, SUN B, MIAO H, et al. NIR-Ⅱ dye-based multifunctional telechelic glycopolymers for NIR-Ⅱa fluorescence imaging-guided stimuli-responsive chemo-photothermal combination therapy [J]. ACS Mater. Lett., 2020, 2(2): 174-183. doi: 10.1021/acsmaterialslett.9b00480http://dx.doi.org/10.1021/acsmaterialslett.9b00480
YAN D Y, XIE W, ZHANG J Y, et al. Donor/π-bridge manipulation for constructing a stable NIR-Ⅱ aggregation-induced emission luminogen with balanced phototheranostic performance [J]. Angew. Chem. Int. Ed. Engl., 2021, 60(51): 26769-26776. doi: 10.1002/anie.202111767http://dx.doi.org/10.1002/anie.202111767
YAN D Y, WANG M, WU Q, et al. Multimodal imaging-guided photothermal immunotherapy based on a versatile NIR-Ⅱ aggregation-induced emission luminogen [J]. Angew. Chem. Int. Ed. Engl., 2022, 61(27): e202202614. doi: 10.1002/anie.202202614http://dx.doi.org/10.1002/anie.202202614
0
浏览量
772
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构