浏览全部资源
扫码关注微信
北京工业大学材料与制造学部 激光工程研究院, 北京 100124
[ "李茜(1997-),女,河北石家庄人,硕士研究生,2020年于河北大学获得学士学位,主要从事荧光温度传感的研究。E⁃mail: Lisimeng@emails.bjut.edu.cn" ]
[ "赵晨(1989-),男,北京人,博士,助理研究员,2018年于首都师范大学获得博士学位,主要从事微纳光子器件、光场调控、激光辐射和光学传感等领域的研究。" ]
纸质出版日期:2023-10-05,
收稿日期:2023-03-20,
修回日期:2023-04-04,
移动端阅览
李茜,赵晨,米彦霖等.无机卤化物钙钛矿量子点微球腔荧光增强自参考温度传感研究[J].发光学报,2023,44(10):1786-1796.
LI Xi,ZHAO Chen,MI Yanlin,et al.Self-reference Temperature Sensing via Fluorescence Enhancement of Microsphere-cavity-coupled Inorganic Halide Perovskite Quantum Dots[J].Chinese Journal of Luminescence,2023,44(10):1786-1796.
李茜,赵晨,米彦霖等.无机卤化物钙钛矿量子点微球腔荧光增强自参考温度传感研究[J].发光学报,2023,44(10):1786-1796. DOI: 10.37188/CJL.20230066.
LI Xi,ZHAO Chen,MI Yanlin,et al.Self-reference Temperature Sensing via Fluorescence Enhancement of Microsphere-cavity-coupled Inorganic Halide Perovskite Quantum Dots[J].Chinese Journal of Luminescence,2023,44(10):1786-1796. DOI: 10.37188/CJL.20230066.
利用稀土离子掺杂材料、有机染料以及量子点等荧光材料实现荧光温度传感在航空航天、生物医疗、食品储存等领域具有重要意义。其中,无机卤化物钙钛矿量子点(PeQDs)荧光材料由于具有量子产率高,温度依赖性强等特点,在荧光温度传感领域展现了巨大的应用前景。然而,PeQDs只有一个光致荧光(PL)峰,其强度和位置极易受到浓度和尺寸等因素的干扰,因此用单一PL峰进行温度传感的准确性较低。在本工作中,我们提出了一种微球腔阵列(MCA)耦合PeQDs薄膜(MCA/PeQDs)的新型温度传感结构,利用MCA/PeQDs结构与PeQDs薄膜具有温度依赖性的PL峰值强度比实现温度传感。该结构通过微球腔中回音壁模式(WGMs)增强的Purcell效应提高了自发辐射速率,抑制了声子辅助猝灭效应,从而实现了较好的PeQDs荧光增强。结果表明,在223~373 K范围内,当PeQDs浓度为0.131 6 mg/mL、微球腔直径为(19±1) μm时,该结构的绝对灵敏度(
S
a
)与相对灵敏度(
S
r
)可达到0.75 K
-1
和1.95%·K
-1
。本工作克服了使用单个PL峰进行温度传感准确性差的缺点,为荧光材料在高性能荧光温度传感器中的应用开辟了新的途径。
Rare earth ions doped materials, organic dyes and quantum dots are employed to realize the fluorescence temperature sensing which has great significance in aerospace, biomedicine, food storage,
etc
. Fluorescent materials of inorganic halide perovskite QDs(PeQDs) possess great application prospects in the field of fluorescence temperature sensing due to high quantum yield and strong temperature dependence. However, PeQDs have only one photoluminescence(PL) peak whose intensity and position are highly susceptible to interference from factors such as concentration and size, resulting in low accuracy in temperature sensing using this PL peak alone. In this work, we propose a novel temperature sensing structure using microsphere-cavity-array(MCA)capped PeQDs film(MCA/PeQDs). Fluorescence temperature sensing is realized using the temperature dependent PL peak intensity ratio between the MCA/PeQDs structure and the bare one. Through the Purcell effect induced by microsphere cavity supported whispering-gallery modes(WGMs) in the microsphere cavity, the spontaneous emission rate is enhanced, and the phonon assisted thermal quenching effect is suppressed, which results in better fluorescence enhancement of PeQDs. As a result, when the concentration of PeQDs is 0.131 6 mg/mL and the diameter of the microsphere is (19±1) μm, the absolute sensitivity(
S
a
) and relative sensitivity(
S
r
) can achieve 0.75 K
-1
and 1.95%·K
-1
. The present work overcomes the poor accuracy of temperature sensing in single PL peak and opens up a new way for fluorescence materials used in fluorescence temperature sensing with high performance.
温度传感微球腔无机卤化物钙钛矿量子点荧光增强
temperature sensingmicrosphere cavityinorganic halide perovskite quantum dotsfluorescence enhancement
XU H K, CHEN W J, WANG C Y, et al. Ultralight and flexible silver nanoparticle-wrapped “scorpion pectine-like” polyimide hybrid aerogels as sensitive pressor sensors with wide temperature range and consistent conductivity response [J]. Chem. Eng. J., 2023, 453: 139647-1-12. doi: 10.1016/j.cej.2022.139647http://dx.doi.org/10.1016/j.cej.2022.139647
LIU G F, WANG Z X, SUN W, et al. Robust emission in near-infrared II of lanthanide nanoprobes conjugated with Au-(LNPs-Au) for temperature sensing and controlled photothermal therapy [J]. Chem. Eng. J., 2023, 452: 139504-1-10. doi: 10.1016/j.cej.2022.139504http://dx.doi.org/10.1016/j.cej.2022.139504
FENG T T, YE Y X, LIU X, et al. A robust mixed-lanthanide polyMOF membrane for ratiometric temperature sensing [J]. Angew. Chem., 2020, 132(48): 21936-21941. doi: 10.1002/ange.202009765http://dx.doi.org/10.1002/ange.202009765
LÓPEZ A J, RUIZ-MOLINA D, LANDFESTER K, et al. Off/on fluorescent nanoparticles for tunable high-temperature threshold sensing [J]. Adv. Funct. Mater., 2018, 28(28): 1801492-1-7. doi: 10.1002/adfm.201801492http://dx.doi.org/10.1002/adfm.201801492
DI Q, LI L, MIAO X D, et al. Fluorescence-based thermal sensing with elastic organic crystals [J]. Nat. Commun., 2022, 13(1): 5280-1-8. doi: 10.1038/s41467-022-32894-whttp://dx.doi.org/10.1038/s41467-022-32894-w
FENG G F, ZHANG H Z, ZHU X H, et al. Fluorescence thermometers: intermediation of fundamental temperature and light [J]. Biomater. Sci., 2022, 10(8): 1855-1882. doi: 10.1039/d1bm01912khttp://dx.doi.org/10.1039/d1bm01912k
BRITES C D S, BALABHADRA S, CARLOS L D. Lanthanide-based thermometers: at the cutting-edge of luminescence thermometry [J]. Adv. Opt. Mater., 2019, 7(5): 1801239-1-30. doi: 10.1002/adom.201801239http://dx.doi.org/10.1002/adom.201801239
WANG Q, TANG Z H, LI L H, et al. Highly efficient red-emitting carbon dots as a “turn-on” temperature probe in living cells [J]. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2022, 280: 121538-1-9. doi: 10.1016/j.saa.2022.121538http://dx.doi.org/10.1016/j.saa.2022.121538
CHI F F, JIANG B, ZHAO Z M, et al. Multimodal temperature sensing using Zn2GeO4∶Mn2+ phosphor as highly sensitive luminescent thermometer [J]. Sens. Actuators B Chem., 2019, 296: 126640-1-8. doi: 10.1016/j.snb.2019.126640http://dx.doi.org/10.1016/j.snb.2019.126640
XUE K, WANG C, WANG J X, et al. A sensitive and reliable organic fluorescent nanothermometer for noninvasive temperature sensing [J]. J. Am. Chem. Soc., 2021, 143(35): 14147-14157. doi: 10.1021/jacs.1c04597http://dx.doi.org/10.1021/jacs.1c04597
LI P P, JIA M C, LIU G F, et al. Investigation on the fluorescence intensity ratio sensing thermometry based on nonthermally coupled levels [J]. ACS Appl. Bio. Mater., 2019, 2(4): 1732-1739. doi: 10.1021/acsabm.9b00115http://dx.doi.org/10.1021/acsabm.9b00115
ZHANG Y Q, LIU J M, ZHANG H L, et al. Ultra-stable Tb3+∶CsPbI3 nanocrystal glasses for wide-range high-sensitivity optical temperature sensing [J]. J. Eur. Ceram. Soc., 2020, 40(15): 6023-6030. doi: 10.1016/j.jeurceramsoc.2020.07.016http://dx.doi.org/10.1016/j.jeurceramsoc.2020.07.016
JIN J W, LIN J, HUANG Y P, et al. High sensitivity ratiometric fluorescence temperature sensing using the microencapsulation of CsPbBr3 and K2SiF6∶Mn4+ phosphor [J]. Chin. Chem. Lett., 2022, 33(11): 4798-4802. doi: 10.1016/j.cclet.2022.01.017http://dx.doi.org/10.1016/j.cclet.2022.01.017
VYŠNIAUSKAS A, CORNELL B, SHERIN P S, et al. Cyclopropyl substituents transform the viscosity-sensitive BODIPY molecular rotor into a temperature sensor [J]. ACS Sens., 2021, 6(6): 2158-2167. doi: 10.1021/acssensors.0c02275http://dx.doi.org/10.1021/acssensors.0c02275
ĆIRIĆ A, STOJADINOVIĆ S, RISTIĆ Z, et al. Supersensitive Sm2+-activated Al2O3 thermometric coatings for high-resolution multiple temperature read-outs from luminescence [J]. Adv. Mater. Technol., 2021, 6(4): 2001201. doi: 10.1002/admt.202001201http://dx.doi.org/10.1002/admt.202001201
ZHOU L H, DU P, LI W P, et al. Lithium ion doping triggered splendid quantum efficiency and thermal stability in Li2SrSiO4∶xEu2+ phosphors for optical thermometry and high luminous efficiency white-LED [J]. New J. Chem., 2019, 43(42): 16445-16453. doi: 10.1039/C9NJ04102Hhttp://dx.doi.org/10.1039/C9NJ04102H
LU H Y, YANG J S, HUANG D C, et al. Ultranarrow NIR bandwidth and temperature sensing of YOF∶Yb3+/Tm3+ phosphor in low temperature range [J]. J. Lumin., 2019, 206: 613-617. doi: 10.1016/j.jlumin.2018.10.091http://dx.doi.org/10.1016/j.jlumin.2018.10.091
AMARASINGHE D K, RABUFFETTI F A. Bandshift luminescence thermometry using Mn4+∶Na4Mg(WO4)3 phosphors [J]. Chem. Mater., 2019, 31(24): 10197-10204.
BAFFOU G, KREUZER M P, KULZER F, et al. Temperature mapping near plasmonic nanostructures using fluorescence polarization anisotropy [J]. Opt. Express, 2009, 17(5): 3291-3298. doi: 10.1364/oe.17.003291http://dx.doi.org/10.1364/oe.17.003291
ZHANG X G, HUANG Y M, GONG M L. Dual-emitting Ce3+, Tb3+ co-doped LaOBr phosphor: Luminescence, energy transfer and ratiometric temperature sensing [J]. Chem. Eng. J., 2017, 307: 291-299. doi: 10.1016/j.cej.2016.08.087http://dx.doi.org/10.1016/j.cej.2016.08.087
WANG C Y, LIN H, XIANG X Q, et al. CsPbBr3/EuPO4 dual-phase devitrified glass for highly sensitive self-calibrating optical thermometry [J]. J. Mater. Chem. C, 2018, 6(37): 9964-9971. doi: 10.1039/c8tc03457ehttp://dx.doi.org/10.1039/c8tc03457e
ZHONG J S, CHEN D Q, PENG Y Z, et al. A review on nanostructured glass ceramics for promising application in optical thermometry [J]. J. Alloys Compd., 2018, 763: 34-48. doi: 10.1016/j.jallcom.2018.05.348http://dx.doi.org/10.1016/j.jallcom.2018.05.348
LI X Y, YU Y L, HONG J Q, et al. Optical temperature sensing of Eu3+-doped oxyhalide glasses containing CsPbBr3 perovskite quantum dots [J]. J. Lumin., 2020, 219: 116897-1-8. doi: 10.1016/j.jlumin.2019.116897http://dx.doi.org/10.1016/j.jlumin.2019.116897
ZHUANG B, LIU Y, YUAN S, et al. Glass stabilized ultra-stable dual-emitting Mn-doped cesium lead halide perovskite quantum dots for cryogenic temperature sensing [J]. Nanoscale, 2019, 11(32): 15010-15016. doi: 10.1039/c9nr05831ahttp://dx.doi.org/10.1039/c9nr05831a
YANG Y S, LIU Z D, CHEN D, et al. Multifunctional N-doped graphene quantum dots towards tetracycline detection, temperature sensing and high-performance WLEDs [J]. J. Photochem. Photobiol. A Chem., 2021, 405: 112977-1-8. doi: 10.1016/j.jphotochem.2020.112977http://dx.doi.org/10.1016/j.jphotochem.2020.112977
LU M C, ZHOU L. One-step sonochemical synthesis of versatile nitrogen-doped carbon quantum dots for sensitive detection of Fe2+ ions and temperature in vitro [J]. Mater. Sci. Eng. C, 2019, 101: 352-359. doi: 10.1016/j.msec.2019.03.109http://dx.doi.org/10.1016/j.msec.2019.03.109
GUO J J, ZHOU B Q, YANG C X, et al. Stretchable and temperature-sensitive polymer optical fibers for wearable health monitoring [J]. Adv. Funct. Mater., 2019, 29(33): 1902898-1-8. doi: 10.1002/adfm.201902898http://dx.doi.org/10.1002/adfm.201902898
STEINEGGER A, KLIMANT I, BORISOV S M. Purely organic dyes with thermally activated delayed fluorescence:a versatile class of indicators for optical temperature sensing [J]. Adv. Opt. Mater., 2017, 5(18): 1700372-1-13. doi: 10.1002/adom.201700372http://dx.doi.org/10.1002/adom.201700372
FENG J, XIONG L, WANG S Q, et al. Fluorescent temperature sensing using triarylboron compounds and microcapsules for detection of a wide temperature range on the micro- and macroscale [J]. Adv. Funct. Mater., 2013, 23(3): 340-345. doi: 10.1002/adfm.201201712http://dx.doi.org/10.1002/adfm.201201712
ZHAO Y, WANG X S, ZHANG Y, et al. Optical temperature sensing of up-conversion luminescent materials: fundamentals and progress [J]. J. Alloys Compd., 2020, 817: 152691-1-27. doi: 10.1016/j.jallcom.2019.152691http://dx.doi.org/10.1016/j.jallcom.2019.152691
HUANG Y P, LAI Z W, JIN J W, et al. Ultrasensitive temperature sensing based on ligand-free alloyed CsPbClxBr3-x perovskite nanocrystals confined in hollow mesoporous silica with high density of halide vacancies [J]. Small, 2021, 17(46): 2103425-1-10. doi: 10.1002/smll.202103425http://dx.doi.org/10.1002/smll.202103425
ZHAO C, CHEN W J, WEI J X, et al. Electrically tunable and robust bound states in the continuum enabled by 2D transition metal dichalcogenide [J]. Adv. Opt. Mater., 2022, 10(24): 2201634-1-8. doi: 10.1002/adom.202201634http://dx.doi.org/10.1002/adom.202201634
LI S R, LUO J J, LIU J, et al. Self-trapped excitons in all-inorganic halide perovskites: fundamentals, status, and potential applications [J]. J. Phys. Chem. Lett., 2019, 10(8): 1999-2007. doi: 10.1021/acs.jpclett.8b03604http://dx.doi.org/10.1021/acs.jpclett.8b03604
LAO X Z, ZHOU W, BAO Y T, et al. Photoluminescence signatures of thermal expansion, electron-phonon coupling and phase transitions in cesium lead bromide perovskite nanosheets [J]. Nanoscale, 2020, 12(13): 7315-7320. doi: 10.1039/d0nr00025fhttp://dx.doi.org/10.1039/d0nr00025f
HE Y H, MATEI L, JUNG H J, et al. High spectral resolution of gamma-rays at room temperature by perovskite CsPbBr3 single crystals [J]. Nat. Commun., 2018, 9(1): 1609-1-8. doi: 10.1038/s41467-018-04073-3http://dx.doi.org/10.1038/s41467-018-04073-3
LIU J Q, ZHAO Y Y, LI X L, et al. Dual-emissive CsPbBr3@Eu-BTC composite for self-calibrating temperature sensing application [J]. Cryst. Growth Des., 2020, 20(1): 454-459. doi: 10.1021/acs.cgd.9b01374http://dx.doi.org/10.1021/acs.cgd.9b01374
YAN Y Z, YANG L X, LIU W, et al. Spontaneous radiation amplification in a microsphere-coupled CsPbBr3 perovskite vertical structure [J]. Adv. Opt. Mater., 2021, 9(6): 2001932-1-10. doi: 10.1002/adom.202001932http://dx.doi.org/10.1002/adom.202001932
YAN Y Z, ZHANG X H, LI X Z, et al. Enhancement of valley polarization in monolayer WSe2 coupled with microsphere-cavity-array [J]. Adv. Funct. Mater., 2023, 33(22): 2213933-1-10. doi: 10.1002/adfm.202213933http://dx.doi.org/10.1002/adfm.202213933
李磊朋. 稀土基荧光强度比测温方法的相对灵敏度及抗干扰研究 [D]. 哈尔滨: 哈尔滨工业大学, 2020.
LI L P. On the Relative Sensitivity and Anti⁃interference of Rare Earth⁃based Luminescence Intensity Ratio Thermometry [D]. Harbin: Harbin Institute of Technology, 2020. (in Chinese)
YANG L X, LI L, WANG Q, et al. Over 1 000-fold enhancement of the unidirectional photoluminescence from a microsphere-cavity-array-capped QD/PDMS composite film for flexible lighting and displays [J]. Adv. Opt. Mater., 2019, 7(24): 1901228-1-10. doi: 10.1002/adom.201901228http://dx.doi.org/10.1002/adom.201901228
LU Y, LI P P, XIE W Q, et al. Negative thermal quenching CsPbBr3 glass-ceramic based on intrinsic radiation and vacancy defect co-induced dual-emission [J]. J. Eur. Ceram. Soc., 2021, 41(6): 3635-3642. doi: 10.1016/j.jeurceramsoc.2021.01.039http://dx.doi.org/10.1016/j.jeurceramsoc.2021.01.039
AO R, XING L L, YANG W Q. A high-brightness phosphor based on Yb3+/Er3+ codoped Y2O3 micro-crystals and controllable temperature sensing sensitivity via rare earth ions [J]. Opt. Commun., 2021, 492: 126967-1-6. doi: 10.1016/j.optcom.2021.126967http://dx.doi.org/10.1016/j.optcom.2021.126967
XU W, ZHAO L, SHANG F K, et al. Modulating the thermally coupled status of energy levels in rare earth ions for sensitive optical temperature sensing [J]. J. Lumin., 2022, 249: 119042-1-9. doi: 10.1016/j.jlumin.2022.119042http://dx.doi.org/10.1016/j.jlumin.2022.119042
WANG C C, HUANG Y Q, HEYDARI E, et al. Dual-mode optical ratiometric thermometer based on rare earth ions doped perovskite oxides with tunable luminescence [J]. Ceram. Int., 2022, 48(9): 12578-12584. doi: 10.1016/j.ceramint.2022.01.125http://dx.doi.org/10.1016/j.ceramint.2022.01.125
LIU J Q, YUE X Z, WANG Z P, et al. Coumarin 7 functionalized europium-based metal-organic-framework luminescent composites for dual-mode optical thermometry [J]. J. Mater. Chem. C, 2020, 8(38): 13328-13335. doi: 10.1039/d0tc03365khttp://dx.doi.org/10.1039/d0tc03365k
CAO W Q, CUI Y J, YANG Y, et al. Dyes encapsulated nanoscale metal-organic frameworks for multimode temperature sensing with high spatial resolution [J]. ACS Mater. Lett., 2021, 3(9): 1426-1432. doi: 10.1021/acsmaterialslett.1c00334http://dx.doi.org/10.1021/acsmaterialslett.1c00334
0
浏览量
635
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构