浏览全部资源
扫码关注微信
1.河北工业大学 材料科学与工程学院, 天津 300130
2.吉林大学电子科学与工程学院 集成光电子学国家重点联合实验室, 吉林 长春 130012
[ "赵雪帆(1999-),女,河北石家庄人,硕士研究生, 2021年于河北工业大学获得学士学位,主要从事半导体光伏器件中非铅钙钛矿太阳能电池的开发与研究。Emailzxf990914@163.com" ]
[ "孟凡斌(1969-),男,河北承德人,博 士,研究员,博士生导师,2004 年于河北工业大学获得博士学位,主要从事纳米磁性功能材料、纳米电接触材料的研究。Email: mengfanbin620@163.com" ]
[ "宋宏伟(1967-),男,黑龙江阿城人,博士,教授,博士生导师,1996年于中国科学院长春物理研究所获得博士学位,主要从事稀土发光材料物理、光电子及生物应用的研究。Email: songhw@jlu.edu.cn" ]
[ "陈聪(1990-),男,吉林长春人,博士,副教授, 2019年于吉林大学获得博士学位,主要从事高效与长时稳定的钙钛矿太阳能电池的研究。Email: chencong@hebut.edu.cn" ]
纸质出版日期:2022-06-05,
收稿日期:2022-02-17,
修回日期:2022-03-08,
移动端阅览
赵雪帆,朱云飞,孟凡斌等.非铅钙钛矿光伏材料与器件研究进展[J].发光学报,2022,43(06):817-832.
ZHAO Xue-fan,ZHU Yun-fei,MENG Fan-bin,et al.Progress of Lead-free Perovskite Photovoltaic Materials and Devices[J].Chinese Journal of Luminescence,2022,43(06):817-832.
赵雪帆,朱云飞,孟凡斌等.非铅钙钛矿光伏材料与器件研究进展[J].发光学报,2022,43(06):817-832. DOI: 10.37188/CJL.20220050.
ZHAO Xue-fan,ZHU Yun-fei,MENG Fan-bin,et al.Progress of Lead-free Perovskite Photovoltaic Materials and Devices[J].Chinese Journal of Luminescence,2022,43(06):817-832. DOI: 10.37188/CJL.20220050.
基于卤化铅的钙钛矿材料因其优良的光电性能和可溶液加工特性,近年来受到光伏及光电领域研究人员的广泛关注。然而,铅(Pb)基钙钛矿材料因其毒性和不稳定性使其无法在商业领域大规模普及应用。开发非铅钙钛矿光吸收材料能够有效降低其环境毒性,是未来新一代光伏技术发展的主要趋势。本文综述了非铅钙钛矿光电材料目前的最新研究进展,系统讨论了其晶体结构、理化性质、光伏特性及其场景应用。我们重点综述了结构相似于卤化铅钙钛矿的三维非铅钙钛矿化合物的研究进展,同时还探讨了二维Ruddlesden⁃Popper相、低维缺陷相非铅钙钛矿化合物和非钙钛矿类化合物的研究进展。本文能够为获得安全、稳定、环境友好的新一代光电材料提供重要借鉴。
Lead halide based perovskites have received a lot of attention from researchers in photovoltaic and optoelectronic fields in recent years due to their excellent photovoltaic properties and solution processable characteristics. However, the toxicity and instability of lead(Pb)-based perovskite have prevented them from being used in commercial applications on a large scale. The development of lead-free perovskite light-absorbing materials can effectively reduce their environmental toxicity and is a major trend in the future development of next-generation photovoltaic technologies. Here, we review the latest research progress of lead-free perovskite photovoltaic materials and systematically discuss their crystal structures, physicochemical properties, photovoltaic characteristics and their scenario applications. We focus on reviewing the research progress of three-dimensional non-lead chalcogenide compounds with structures similar to lead halide octahedra, and also discuss the research progress of two-dimensional Ruddlesden-Popper phase, low-dimensional defective phase lead-free perovskite compounds and non-perovskite compounds. Hoping this paper can provide an important reference for obtaining safe, stable and environmentally friendly next-generation optoelectronic materials.
无铅钙钛矿太阳能电池
lead-freeperovskitesolar cell
KOJIMA A,TESHIMA K,SHIRAI Y,et al. Organometal halide perovskites as visible‑light sensitizers for photovoltaic cells [J]. J. Am. Chem. Soc., 2009,131(17):6050-6051. doi: 10.1021/ja809598rhttp://dx.doi.org/10.1021/ja809598r
MIN H,LEE D Y,KIM J,et al. Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes [J]. Nature, 2021,598(7881):444-450. doi: 10.1038/s41586-021-03964-8http://dx.doi.org/10.1038/s41586-021-03964-8
杨立群,马晓辉,郑士建,等. 柔性钙钛矿太阳能电池中电极材料和电荷传输材料的研究进展 [J]. 发光学报, 2020,41(10):1175-1194. doi: 10.37188/CJL.20200192http://dx.doi.org/10.37188/CJL.20200192
YANG L Q,MA X H,ZHENG S J,et al. Research progress on electrode materials and charge transport materials in flexible perovskite solar cells [J]. Chin. J. Lumin., 2020,41(10):1175-1194. (in Chinese). doi: 10.37188/CJL.20200192http://dx.doi.org/10.37188/CJL.20200192
WALSH A,SCANLON D O,CHEN S Y,et al. Self-regulation mechanism for charged point defects in hybrid halide perovskites [J]. Angew. Chem., 2015,127(6):1811-1814. doi: 10.1002/ange.201409740http://dx.doi.org/10.1002/ange.201409740
BABAYIGIT A,ETHIRAJAN A,MULLER M,et al. Toxicity of organometal halide perovskite solar cells [J]. Nat.Mater., 2016,15(3):247-251. doi: 10.1038/nmat4572http://dx.doi.org/10.1038/nmat4572
BABAYIGIT A,THANH D D,ETHIRAJAN A,et al. Assessing the toxicity of Pb-and Sn-based perovskite solar cells in model organism Daniorerio [J]. Sci.Rep., 2016,6(1):18721-1-11. doi: 10.1038/srep18721http://dx.doi.org/10.1038/srep18721
LI J M,CAO H L,JIAO W B,et al. Biological impact of lead from halide perovskites reveals the risk of introducing a safe threshold [J]. Nat. Commun., 2020,11(1):310-1-5. doi: 10.1038/s41467-019-13910-yhttp://dx.doi.org/10.1038/s41467-019-13910-y
BARTESAGHI D,RAY A,JIANG J K,et al. Partially replacing Pb2+ by Mn2+ in hybrid metal halide perovskites:structural and electronic properties [J]. APL Mater., 2018,6(12):121106-1-11. doi: 10.1063/1.5060953http://dx.doi.org/10.1063/1.5060953
LENG M Y,YANG Y,ZENG K,et al. All-inorganic bismuth-based perovskite quantum dots with bright blue photoluminescence and excellent stability [J]. Adv. Funct. Mater., 2018,28(1):1704446-1-11. doi: 10.1002/adfm.201704446http://dx.doi.org/10.1002/adfm.201704446
SHAO S Y,LIU J,PORTALE G,et al. Highly reproducible Sn-based hybrid perovskite solar cells with 9% efficiency [J]. Adv. Energy Mater., 2018,8(4):1702019-1-10. doi: 10.1002/aenm.201702019http://dx.doi.org/10.1002/aenm.201702019
CAO J P,TAI Q D,YOU P,et al. Enhanced performance of tin-based perovskite solar cells induced by an ammonium hypophosphite additive [J]. J. Mater. Chem. A, 2019,7(46):26580-26585. doi: 10.1039/c9ta08679jhttp://dx.doi.org/10.1039/c9ta08679j
TSAREV S,BOLDYREVA A G,LUCHKIN S Y,et al. Hydrazinium-assisted stabilisation of methylammonium tin iodide for lead-free perovskite solar cells [J]. J. Mater. Chem. A, 2018,6(43):21389-21395. doi: 10.1039/c8ta07699ehttp://dx.doi.org/10.1039/c8ta07699e
SAPAROV B,MITZI D B. Organic⁃inorganic perovskites:structural versatility for functional materials design [J]. Chem. Rev., 2016,116(7):4558-4596. doi: 10.1021/acs.chemrev.5b00715http://dx.doi.org/10.1021/acs.chemrev.5b00715
CORTECCHIA D,DEWI H A,YIN J,et al. Lead-free MA2CuClxBr4–x hybrid perovskites [J]. Inorg. Chem., 2016,55(3):1044-1052. doi: 10.1021/acs.inorgchem.5b01896http://dx.doi.org/10.1021/acs.inorgchem.5b01896
RANDALL C A,BHALLA A S,SHROUT T R,et al. Classification and consequences of complex lead perovskite ferroelectrics with regard to B-site cation order [J]. J. Mater. Res.,1990,5(4):829-834. doi: 10.1557/jmr.1990.0829http://dx.doi.org/10.1557/jmr.1990.0829
GOLDSCHMIDT V M. Die gesetze der krystallochemie [J]. Naturwissenschaften,1926,14(21):477-485. doi: 10.1007/bf01507527http://dx.doi.org/10.1007/bf01507527
URIBE J I,RAMIREZ D,OSORIO-GUILLÉN J M,et al. CH3NH3CaI3 perovskite:synthesis,characterization,and first-principles studies [J]. J. Phys. Chem. C, 2016,120(30):16393-16398. doi: 10.1021/acs.jpcc.6b04207http://dx.doi.org/10.1021/acs.jpcc.6b04207
KIESLICH G,SUN S J,CHEETHAM A K. Solid-state principles applied to organic-inorganic perovskites:new tricks for an old dog [J]. Chem. Sci., 2014,5(12):4712-4715. doi: 10.1039/C4SC02211Dhttp://dx.doi.org/10.1039/C4SC02211D
SHAHIDUZZAMAN M,MUSLIH E Y,HASAN A K M,et al. The benefits of ionic liquids for the fabrication of efficient and stable perovskite photovoltaics [J]. Chem. Eng. J., 2021,411:128461-1-15. doi: 10.1016/j.cej.2021.128461http://dx.doi.org/10.1016/j.cej.2021.128461
CHEN Z,WANG J J,REN Y H,et al. Schottky solar cells based on CsSnI3 thin-films [J]. Appl. Phys. Lett., 2012,101(9):093901-1-4. doi: 10.1063/1.4748888http://dx.doi.org/10.1063/1.4748888
LIN S,ZHANG B P,LÜ T Y,et al. Inorganic lead-free B-γ-CsSnI3 perovskite solar cells using diverse electron-transporting materials:a simulation study [J]. ACS Omega, 2021,6(40):26689-26698. doi: 10.1021/acsomega.1c04096http://dx.doi.org/10.1021/acsomega.1c04096
PENG L P,XIE W. Theoretical and experimental investigations on the bulk photovoltaic effect in lead-free perovskites MASnI3 and FASnI3 [J]. RSC Adv., 2020,10(25):14679-14688. doi: 10.1039/d0ra02584dhttp://dx.doi.org/10.1039/d0ra02584d
SHI TT,ZHANG H S,MENG W W,et al. Effects of organic cations on the defect physics of tin halide perovskites [J]. J. Mater. Chem. A, 2017,5(29):15124-15129. doi: 10.1039/c7ta02662ehttp://dx.doi.org/10.1039/c7ta02662e
TAKAHASHI Y,OBARA R,LIN Z Z,et al. Charge-transport in tin-iodide perovskite CH3NH3SnI3:origin of high conductivity [J]. Dalton Trans., 2011,40(20):5563-5568. doi: 10.1039/c0dt01601bhttp://dx.doi.org/10.1039/c0dt01601b
WANG F,MA J L,XIE F Y,et al. Organic cation-dependent degradation mechanism of organotin halide perovskites [J]. Adv. Funct. Mater., 2016,26(20):3417-3423. doi: 10.1002/adfm.201505127http://dx.doi.org/10.1002/adfm.201505127
WANG C B,GU F D,ZHAO Z R,et al. Self-repairing tin-based perovskite solar cells with a breakthrough efficiency over 11% [J]. Adv. Mater., 2020,32(31):1907623-1-9. doi: 10.1002/adma.201907623http://dx.doi.org/10.1002/adma.201907623
MARSHALL K P,WALKER M,WALTON R I,et al. Enhanced stability and efficiency in hole-transport-layer-free CsSnI3 perovskite photovoltaics [J]. Nat. Energy, 2016,1(12):16178-1-9. doi: 10.1038/nenergy.2016.178http://dx.doi.org/10.1038/nenergy.2016.178
YU B B,CHEN Z H,ZHU Y D,et al. Heterogeneous 2D/3D Tin-halides perovskite solar cells with certified conversion efficiency breaking 14% [J]. Adv. Mater., 2021,33(36):2102055-1-10. doi: 10.1002/adma.202102055http://dx.doi.org/10.1002/adma.202102055
JIANG X Y,WANG F,WEI Q,et al. Ultra-high open-circuit voltage of tin perovskite solar cells via an electron transporting layer design [J]. Nat. Commun., 2020,11(1):1245-1-7. doi: 10.1038/s41467-020-15078-2http://dx.doi.org/10.1038/s41467-020-15078-2
SONG T B,CHEN Q,ZHOU H P,et al. Perovskite solar cells:film formation and properties [J]. J. Mater. Chem. A, 2015, 3(17):9032-9050. doi: 10.1039/c4ta05246chttp://dx.doi.org/10.1039/c4ta05246c
JIANG X Y, LI H S, ZHOU Q L, et al. One-step synthesis of SnI2·(DMSO)xadducts for high-performance tin perovskite solar cells [J]. J. Am. Chem. Soc., 2021, 143(29):10970-10976. doi: 10.1021/jacs.1c03032http://dx.doi.org/10.1021/jacs.1c03032
LIU X, WANG Y B, WU T H, et al. Efficient and stable tin perovskite solar cells enabled by amorphous-polycrystalline structure [J]. Nat. Commun., 2020, 11(1):2678-1-7. doi: 10.1038/s41467-020-16561-6http://dx.doi.org/10.1038/s41467-020-16561-6
LIN R X, XU J, WEI M Y, et al. All-perovskite tandem solar cells with improved grain surface passivation [J]. Nature, 2022, 603(7899):73-78. doi: 10.1038/s41586-021-04372-8http://dx.doi.org/10.1038/s41586-021-04372-8
STOUMPOS C C, FRAZER L,CLARK D J,et al. Hybrid germanium iodide perovskite semiconductors:active lone pairs,structural distortions,direct and indirect energy gaps,and strong nonlinear optical properties [J]. J. Am. Chem. Soc.,2015,137(21):6804-6819. doi: 10.1021/jacs.5b01025http://dx.doi.org/10.1021/jacs.5b01025
KRISHNAMOORTHY T,DING H,YAN C,et al. Lead-free germanium iodide perovskite materials for photovoltaic applications [J]. J. Mater. Chem. A, 2015,3(47):23829-23832. doi: 10.1039/c5ta05741hhttp://dx.doi.org/10.1039/c5ta05741h
SUN P P,LI Q S,YANG L N,et al. Theoretical insights into a potential lead-free hybrid perovskite:substituting Pb2+ with Ge2+ [J]. Nanoscale, 2016,8(3):1503-1512. doi: 10.1039/c5nr05337dhttp://dx.doi.org/10.1039/c5nr05337d
HIMA A,LAKHDAR N J. Enhancement of efficiency and stability of CH3NH3GeI3 solar cells with CuSbS2 [J]. Opt. Mater., 2020,99:109607-1-4. doi: 10.1016/j.optmat.2019.109607http://dx.doi.org/10.1016/j.optmat.2019.109607
KOPACIC I,FRIESENBICHLER B,HOEFLER S F,et al. Enhanced performance of germanium halide perovskite solar cells through compositional engineering [J]. ACS Appl. Energy Mater., 2018,1(2):343-347. doi: 10.1021/acsaem.8b00007http://dx.doi.org/10.1021/acsaem.8b00007
DING J N,CHEN M J,QIU J H,et al. Photovoltaic properties of ferroelectric solar cells based on polycrystalline BiFeO3 films sputtered on indium tin oxide substrates [J]. Sci. China Phys.,Mech. Astron., 2015,58(3):1-6. doi: 10.1007/s11433-014-5552-8http://dx.doi.org/10.1007/s11433-014-5552-8
ZHAO S,YAMAMOTO K,IIKUBO S,et al. First-principles study of electronic and optical properties of lead-free double perovskites Cs2NaBX6(B= Sb,Bi; X= Cl,Br,I) [J]. J. Phys. Chem. Solids, 2018,117:117-121. doi: 10.1016/j.jpcs.2018.02.032http://dx.doi.org/10.1016/j.jpcs.2018.02.032
ZHAO X G,YANG J H,FU Y H,et al. Design of lead-free inorganic halide perovskites for solar cells via cation-transmutation [J]. J. Am. Chem. Soc., 2017,139(7):2630-2638. doi: 10.1021/jacs.6b09645http://dx.doi.org/10.1021/jacs.6b09645
XIAO Z W,DU K Z,MENG W W,et al. Intrinsic instability of Cs2In(Ⅰ)M(Ⅲ)X6(M=Bi,Sb; X=alogen) double perovskites:a combined density functional theory and experimental study [J]. J. Am. Chem. Soc., 2017,139(17):6054-6057. doi: 10.1021/jacs.7b02227http://dx.doi.org/10.1021/jacs.7b02227
MCCLURE E T,BALL M R,WINDL W,et al. Cs2AgBiX6(X=Br,Cl):new visible light absorbing,lead-free halide perovskite semiconductors [J]. Chem. Mater., 2016,28(5):1348-1354. doi: 10.1021/acs.chemmater.5b04231http://dx.doi.org/10.1021/acs.chemmater.5b04231
SLAVNEY A H,HU T,LINDENBERG A M,et al. A bismuth-halide double perovskite with long carrier recombination lifetime for photovoltaic applications [J]. J. Am. Chem. Soc., 2016,138(7):2138-2141. doi: 10.1021/jacs.5b13294http://dx.doi.org/10.1021/jacs.5b13294
WU C C,ZHANG Q H,LIU Y,et al. The dawn of lead-free perovskite solar cell:highly stable double perovskite Cs2AgBiBr6 film [J]. Adv. Sci., 2018,5(3):1700759-1-8. doi: 10.1002/advs.201700759http://dx.doi.org/10.1002/advs.201700759
DAEM N,DEWALQUE J,LANG F,et al. Spray-coated lead-free Cs2AgBiBr6 double perovskite solar cells with high open-circuit voltage [J]. Solar RRL, 2021,5(9):2100422-1-8. doi: 10.1002/solr.202100422http://dx.doi.org/10.1002/solr.202100422
SLAVNEY A H,LEPPERT L,BARTESAGHI D,et al. Defect-induced band-edge reconstruction of a bismuth-halide double perovskite for visible-light absorption [J]. J. Am. Chem. Soc., 2017, 139(14):5015-5018. doi: 10.1021/jacs.7b01629http://dx.doi.org/10.1021/jacs.7b01629
ZHANG Z H, WU C C,WANG D,et al. Efficient nonlead double perovskite solar cell with multiple hole transport layers [J]. ACS Appl. Energy Mater., 2020,3(10):9594-9599. doi: 10.1021/acsaem.0c01066http://dx.doi.org/10.1021/acsaem.0c01066
YANG Y,LIU C,CAI M L,et al. Dimension-controlled growth of antimony-based perovskite-like halides for lead-free and semitransparent photovoltaics [J]. ACS Appl. Mater. Interfaces, 2020,12(14):17062-17069. doi: 10.1021/acsami.0c00681http://dx.doi.org/10.1021/acsami.0c00681
REN H,YU S D,CHAO L F,et al. Efficient and stable Ruddlesden⁃Popper perovskite solar cell with tailored interlayer molecular interaction [J]. Nat. Photonics, 2020,14(3):154-163. doi: 10.1038/s41566-019-0572-6http://dx.doi.org/10.1038/s41566-019-0572-6
MA L,JU M G,DAI J,et al. Tin and germanium based two-dimensional Ruddlesden-Popper hybrid perovskites for potential lead-free photovoltaic and photoelectronic applications [J]. Nanoscale, 2018,10(24):11314-11319. doi: 10.1039/c8nr03589jhttp://dx.doi.org/10.1039/c8nr03589j
MITZI D B. Synthesis,crystal structure,and optical and thermal properties of (C4H9NH3)2MI4(M= Ge,Sn,Pb) [J]. Chem. Mater.,1996,8(3):791-800. doi: 10.1021/cm9505097http://dx.doi.org/10.1021/cm9505097
CAO D H,STOUMPOS C C,YOKOYAMA T,et al. Thin films and solar cells based on semiconducting two-dimensional Ruddlesden-Popper (CH3(CH2)3NH3)2(CH3NH3)n-1SnnI3n+1 perovskites [J]. ACS Energy Lett., 2017,2(5):982-990. doi: 10.1021/acsenergylett.7b00202http://dx.doi.org/10.1021/acsenergylett.7b00202
XU H Y,JIANG Y Z,HE T W,et al. Orientation regulation of tin-based reduced-dimensional perovskites for highly efficient and stable photovoltaics [J]. Adv. Funct. Mater., 2019,29(47):1807696-1-11. doi: 10.1002/adfm.201807696http://dx.doi.org/10.1002/adfm.201807696
CHENG P F,WU T,ZHANG J W,et al. (C6H5C2H4NH3)2GeI4:a layered two-dimensional perovskite with potential for photovoltaic applications [J]. J. Phys. Chem. Lett., 2017,8(18):4402-4406. doi: 10.1021/acs.jpclett.7b01985http://dx.doi.org/10.1021/acs.jpclett.7b01985
CUI X P,JIANG K J,HUANG J H,et al. Cupric bromide hybrid perovskite heterojunction solar cells [J]. Synth. Met., 2015, 209:247-250. doi: 10.1016/j.synthmet.2015.07.013http://dx.doi.org/10.1016/j.synthmet.2015.07.013
CHENG Z Y,LIN J. Layered organic-inorganic hybrid perovskites:structure,optical properties,film preparation,patterning and templating engineering [J]. CrystEngComm, 2010,12(10):2646-2662. doi: 10.1039/c001929ahttp://dx.doi.org/10.1039/c001929a
POLYAKOV A O,ARKENBOUT A H,BAAS J,et al. Coexisting ferromagnetic and ferroelectric order in a CuCl4-based organic-inorganic hybrid [J]. Chem. Mater., 2012,24(1):133-139. doi: 10.1021/cm2023696http://dx.doi.org/10.1021/cm2023696
BOIX P P,AGARWALA S,KOH T M,et al. Perovskite solar cells:beyond methylammonium lead iodide [J]. J. Phys. Chem. Lett., 2015,6(5):898-907. doi: 10.1021/jz502547fhttp://dx.doi.org/10.1021/jz502547f
LI X L,LI B C,CHANG J H,et al. (C6H5CH2NH3)2CuBr4:a lead-free,highly stable two-dimensional perovskite for solar cell applications [J]. ACS Appl. Energy Mater., 2018,1(6):2709-2716. doi: 10.1021/acsaem.8b00372http://dx.doi.org/10.1021/acsaem.8b00372
ELSEMAN A M,SHALAN A E,SAJID S,et al. Copper-substituted lead perovskite materials constructed with different halides for working (CH3NH3)2CuX4-based perovskite solar cells from experimental and theoretical view [J]. ACS Appl. Mater. Interfaces, 2018,10(14):11699-11707. doi: 10.1021/acsami.8b00495http://dx.doi.org/10.1021/acsami.8b00495
BOIX P P,NONOMURA K,MATHEWS N,et al. Current progress and future perspectives for organic/inorganic perovskite solar cells [J]. Mater. Today, 2014,17(1):16-23. doi: 10.1016/j.mattod.2013.12.002http://dx.doi.org/10.1016/j.mattod.2013.12.002
LI C,LU X,DING W,et al. Formability of ABX3(X=F,Cl,Br,I) halide perovskites [J]. Acta Crystallogr. B, 2008,64(Pt 6):702-707. doi: 10.1107/s0108768108032734http://dx.doi.org/10.1107/s0108768108032734
FANG Y Y,ZHANG L,WU L W,et al. Pressure-induced emission(PIE) and phase transition of a two-dimensional halide double perovskite (BA)4AgBiBr8(BA=CH3(CH2)3NH3+) [J]. Angew. Chem. Int. Ed., 2019,58(43):15249-15253. doi: 10.1002/anie.201906311http://dx.doi.org/10.1002/anie.201906311
CONNOR B A,LEPPERT L,SMITH M D,et al. Layered halide double perovskites:dimensional reduction of Cs2AgBiBr6 [J]. J. Am. Chem. Soc., 2018,140(15):5235-5240. doi: 10.1021/jacs.8b01543http://dx.doi.org/10.1021/jacs.8b01543
CASTRO-CASTRO L M,GULOY A M. Organic-based layered perovskites of mixed-valent gold(Ⅰ)/gold (Ⅲ) iodides [J]. Angew. Chem., 2003,115(24):2877-2880. doi: 10.1002/anie.200350929http://dx.doi.org/10.1002/anie.200350929
GLÜCK N,BEIN T. Prospects of lead-free perovskite-inspired materials for photovoltaic applications [J]. Energy Environ. Sci., 2020,13(12):4691-4716. doi: 10.1039/d0ee01651ahttp://dx.doi.org/10.1039/d0ee01651a
LEHNER A J,FABINI D H,EVANS H A,et al. Crystal and electronic structures of complex bismuth iodides A3Bi2I9(A= K,Rb,Cs) related to perovskite:aiding the rational design of photovoltaics [J]. Chem. Mater., 2015,27(20):7137-7148. doi: 10.1021/acs.chemmater.5b03147http://dx.doi.org/10.1021/acs.chemmater.5b03147
PARK J G,HONG K H. Dual-site compositional engineering of bismuth-based halide perovskites for stable and efficient lead-free solar cells [J]. J. Phys. Chem. C, 2021,125(24):13138-13145. doi: 10.1021/acs.jpcc.1c02057http://dx.doi.org/10.1021/acs.jpcc.1c02057
JOHANSSON M B,ZHU H M,JOHANSSON E M J. Extended photo-conversion spectrum in low-toxic bismuth halide perovskite solar cells [J]. J. Phys. Chem. Lett., 2016,7(17):3467-3471. doi: 10.1021/acs.jpclett.6b01452http://dx.doi.org/10.1021/acs.jpclett.6b01452
TONG X W,KONG W Y,WANG Y Y,et al. High-performance red-light photodetector based on lead-free bismuth halide perovskite film [J]. ACS Appl. Mater. Interfaces, 2017,9(22):18977-18985. doi: 10.1021/acsami.7b04616http://dx.doi.org/10.1021/acsami.7b04616
XIONG Z,HU W,SHE Y,et al. Air-stable lead-free perovskite thin film based on CsBi3I10 and its application in resistive switching devices [J]. ACS Appl. Mater. Interfaces, 2019,11(33):30037-30044. doi: 10.1021/acsami.9b09080http://dx.doi.org/10.1021/acsami.9b09080
ZUO C T,DING L M. Lead-free perovskite materials (NH4)3Sb2IxBr9-x [J]. Angew.Chem. Int. Ed., 2017,56(23):6528-6532. doi: 10.1002/anie.201702265http://dx.doi.org/10.1002/anie.201702265
UMAR F,ZHANG J,JIN Z X,et al. Dimensionality controlling of Cs3Sb2I9 for efficient all-inorganic planar thin film solar cells by HCl-assisted solution method [J]. Adv. Opt. Mater., 2019,7(5):1801368-1-9. doi: 10.1002/adom.201801368http://dx.doi.org/10.1002/adom.201801368
ULLAH S,WANG J M,YANG P X,et al. Lead-free Cs2SnI6 perovskites for optoelectronic applications:recent developments and perspectives [J]. Solar RRL, 2021,5(5):2000830-1-26. doi: 10.1002/solr.202100172http://dx.doi.org/10.1002/solr.202100172
QIU X F,CAO B Q,YUAN S,et al. From unstable CsSnI3 to air-stable Cs2SnI6:a lead-free perovskite solar cell light absorber with bandgap of 1.48 eV and high absorption coefficient [J]. Solar Energy Mater. Solar Cells, 2017,159:227-234. doi: 10.1016/j.solmat.2016.09.022http://dx.doi.org/10.1016/j.solmat.2016.09.022
LEE B,KRENSELEWSKI A,BAIK S I,et al. Solution processing of air-stable molecular semiconducting iodosalts,Cs2SnI6-xBrx,for potential solar cell applications [J]. Sustainable Energy Fuels, 2017,1(4):710-724. doi: 10.1039/c7se00100bhttp://dx.doi.org/10.1039/c7se00100b
AHMAD K,KUMAR P,MOBIN S M. Inorganic Pb-free perovskite light absorbers for efficient perovskite solar cells with enhanced performance [J]. Chem. Asian J., 2020,15(18):2859-2863. doi: 10.1002/asia.202000680http://dx.doi.org/10.1002/asia.202000680
BAI F,HU Y H,HU Y Q,et al. Lead-free,air-stable ultrathin Cs3Bi2I9 perovskite nanosheets for solar cells [J]. Solar Energy Mater. Solar Cells, 2018,184:15-21. doi: 10.1016/j.solmat.2018.04.032http://dx.doi.org/10.1016/j.solmat.2018.04.032
JAIN S M,PHUYAL D,DAVIES M L,et al. An effective approach of vapour assisted morphological tailoring for reducing metal defect sites in lead-free,(CH3NH3)3Bi2I9 bismuth-based perovskite solar cells for improved performance and long-term stability [J]. Nano Energy, 2018,49:614-624. doi: 10.1016/j.nanoen.2018.05.003http://dx.doi.org/10.1016/j.nanoen.2018.05.003
BOOPATHI K M,KARUPPUSWAMY P,SINGH A,et al. Solution-processable antimony-based light-absorbing materials beyond lead halide perovskites [J]. J. Mater. Chem. A, 2017,5(39):20843-20850. doi: 10.1039/c7ta06679ahttp://dx.doi.org/10.1039/c7ta06679a
KARUPPUSWAMY P,BOOPATHI K M,MOHAPATRA A,et al. Role of a hydrophobic scaffold in controlling the crystallization of methylammonium antimony iodide for efficient lead-free perovskite solar cells [J]. Nano Energy, 2018,45:330-336. doi: 10.1016/j.nanoen.2017.12.051http://dx.doi.org/10.1016/j.nanoen.2017.12.051
LI Y B,XU Z Y,LIU X T,et al. Two heteromorphic crystals of antimony-based hybrids showing tunable optical band gaps and distinct photoelectric responses [J]. Inorg. Chem., 2019,58(9):6544-6549. doi: 10.1021/acs.inorgchem.9b00718http://dx.doi.org/10.1021/acs.inorgchem.9b00718
ZHANG R L,MAO X,YANG Y,et al. Air-stable,lead-free zero-dimensional mixed bismuth-antimony perovskite single crystals with ultra-broadband emission [J]. Angew. Chem. Int. Ed., 2019,58(9):2725-2729. doi: 10.1002/anie.201812865http://dx.doi.org/10.1002/anie.201812865
CHEN M,JU M G,CARL A D,et al. Cesium titanium(Ⅳ) bromide thin films based stable lead-free perovskite solar cells [J]. Joule, 2018,2(3):558-570. doi: 10.1016/j.joule.2018.01.009http://dx.doi.org/10.1016/j.joule.2018.01.009
EUVRARD J,WANG X M,LI T Y,et al. Is Cs2TiBr6 a promising Pb-free perovskite for solar energy applications? [J]. J. Mater. Chem. A, 2020,8(7):4049-4054. doi: 10.1039/c9ta13870fhttp://dx.doi.org/10.1039/c9ta13870f
SAKAI N,HAGHIGHIRAD A A,FILIP M R,et al. Solution-processed cesium hexabromopalladate(Ⅳ),Cs2PdBr6,for optoelectronic applications [J]. J. Am. Chem. Soc., 2017,139(17):6030-6033. doi: 10.1021/jacs.6b13258http://dx.doi.org/10.1021/jacs.6b13258
TURKEVYCH I,KAZAOUI S,ITO E,et al. Photovoltaic rudorffites:lead-free silver bismuth halides alternative to hybrid lead halide perovskites [J]. ChemSusChem, 2017,10(19):3754-3759. doi: 10.1002/cssc.201700980http://dx.doi.org/10.1002/cssc.201700980
ZHANG Q H,WU C C,QI X,et al. Photovoltage approaching 0.9 V for planar heterojunction silver bismuth iodide solar cells with Li-TFSI additive [J]. ACS Appl. Energy Mater., 2019,2(5):3651-3656. doi: 10.1021/acsaem.9b00366http://dx.doi.org/10.1021/acsaem.9b00366
PAI N,LU J F,GENGENBACH T R,et al. Silver bismuth sulfoiodide solar cells:tuning optoelectronic properties by sulfide modification for enhanced photovoltaic performance [J]. Appl. Energy Mater., 2019,9(5):1803396-1-11. doi: 10.1002/aenm.201803396http://dx.doi.org/10.1002/aenm.201803396
SUN J F,SINGH D J. Electronic properties,screening,and efficient carrier transport in NaSbS2 [J]. Phys. Rev. Appl., 2017,7(2):024015-1-6. doi: 10.1103/physrevapplied.7.024015http://dx.doi.org/10.1103/physrevapplied.7.024015
RAHAYU S U,CHOU C L,SURIYAWONG N,et al. Sodium antimony sulfide(NaSbS2):turning an unexpected impurity into a promising,environmentally friendly novel solar absorber material [J]. APL Mater., 2016,4(11):116103-1-7. doi: 10.1063/1.4967206http://dx.doi.org/10.1063/1.4967206
RAMACHANDRAN A A,KRISHNAN B,AVELLANEDA D A,et al. Development of lead-free Cu2BiI5 rudorffite thin films for visible light photodetector application [J]. Appl. Surf. Sci., 2021,564:150438-1-10. doi: 10.1016/j.apsusc.2021.150438http://dx.doi.org/10.1016/j.apsusc.2021.150438
HEO J H,KIM J,KIM H,et al. Roles of SnX2(X,F,Cl,Br) additives in tin-based halide perovskites toward highly efficient and stable lead-free perovskite solar cells [J]. J. Phys. Chem. Lett., 2018,9(20):6024-6031. doi: 10.1021/acs.jpclett.8b02555http://dx.doi.org/10.1021/acs.jpclett.8b02555
NOEL N K,STRANKS S D,ABATE A,et al. Lead-free organic-inorganic tin halide perovskites for photovoltaic applications [J]. Energy Environ. Sci., 2014,7(9):3061-3068. doi: 10.1039/c4ee01076khttp://dx.doi.org/10.1039/c4ee01076k
HAO F,STOUMPOS C C,GUO P J,et al. Solvent-mediated crystallization of CH3NH3SnI3 films for heterojunction depleted perovskite solar cells [J]. J. Am. Chem. Soc., 2015,137(35):11445-11452. doi: 10.1021/jacs.5b06658http://dx.doi.org/10.1021/jacs.5b06658
LI F Z,ZHANG C S,HUANG J H,et al. A cation-exchange approach for the fabrication of efficient methylammonium tin iodide perovskite solar cells [J]. Angew. Chem. Int. Ed., 2019,58(20):6688-6692. doi: 10.1002/anie.201902418http://dx.doi.org/10.1002/anie.201902418
KOH T M,KRISHNAMOORTHY T,YANTARA N,et al. Formamidinium tin-based perovskite with low Eg for photovoltaic applications [J]. J. Mater. Chem. A, 2015,3(29):14996-15000. doi: 10.1039/c5ta00190khttp://dx.doi.org/10.1039/c5ta00190k
WANG F,JIANG X Y,CHEN H,et al. 2D-quasi-2D-3D hierarchy structure for tin perovskite solar cells with enhanced efficiency and stability [J]. Joule, 2018,2(12):2732-2743. doi: 10.1016/j.joule.2018.09.012http://dx.doi.org/10.1016/j.joule.2018.09.012
RAN C X,GAO W Y,LI J R,et al. Conjugated organic cations enable efficient self-healing FASnI3 solar cells [J]. Joule, 2019,3(12):3072-3087. doi: 10.1016/j.joule.2019.08.023http://dx.doi.org/10.1016/j.joule.2019.08.023
GREUL E,PETRUS M L,BINEK A,et al. Highly stable,phase pure Cs2AgBiBr6 double perovskite thin films for optoelectronic applications [J]. J. Mater. Chem. A, 2017,5(37):19972-19981. doi: 10.1039/c7ta06816fhttp://dx.doi.org/10.1039/c7ta06816f
IGBARI F,WANG R,WANG Z K,et al. Composition stoichiometry of Cs2AgBiBr6 films for highly efficient lead-free perovskite solar cells [J]. Nano Lett., 2019,19(3):2066-2073. doi: 10.1021/acs.nanolett.9b00238http://dx.doi.org/10.1021/acs.nanolett.9b00238
LI J B,DUAN J L,DU J,et al. Alkali metal ion-regulated lead-free,all-inorganic double perovskites for HTM-free,carbon-based solar cells [J]. ACS Appl. Mater. Interfaces, 2020,12(42):47408-47415. doi: 10.1021/acsami.0c11770http://dx.doi.org/10.1021/acsami.0c11770
0
浏览量
1627
下载量
5
CSCD
关联资源
相关文章
相关作者
相关机构