图1 (a)三维钙钛矿的一般结构;(b)常规nt-i-p器件原理图;(c)倒置p-i-n器件原理图。
收稿日期:2022-02-17,
修回日期:2022-03-08,
纸质出版日期:2022-06-05
移动端阅览
引用本文
阅读全文PDF
基于卤化铅的钙钛矿材料因其优良的光电性能和可溶液加工特性,近年来受到光伏及光电领域研究人员的广泛关注。然而,铅(Pb)基钙钛矿材料因其毒性和不稳定性使其无法在商业领域大规模普及应用。开发非铅钙钛矿光吸收材料能够有效降低其环境毒性,是未来新一代光伏技术发展的主要趋势。本文综述了非铅钙钛矿光电材料目前的最新研究进展,系统讨论了其晶体结构、理化性质、光伏特性及其场景应用。我们重点综述了结构相似于卤化铅钙钛矿的三维非铅钙钛矿化合物的研究进展,同时还探讨了二维Ruddlesden⁃Popper相、低维缺陷相非铅钙钛矿化合物和非钙钛矿类化合物的研究进展。本文能够为获得安全、稳定、环境友好的新一代光电材料提供重要借鉴。
Lead halide based perovskites have received a lot of attention from researchers in photovoltaic and optoelectronic fields in recent years due to their excellent photovoltaic properties and solution processable characteristics. However, the toxicity and instability of lead(Pb)-based perovskite have prevented them from being used in commercial applications on a large scale. The development of lead-free perovskite light-absorbing materials can effectively reduce their environmental toxicity and is a major trend in the future development of next-generation photovoltaic technologies. Here, we review the latest research progress of lead-free perovskite photovoltaic materials and systematically discuss their crystal structures, physicochemical properties, photovoltaic characteristics and their scenario applications. We focus on reviewing the research progress of three-dimensional non-lead chalcogenide compounds with structures similar to lead halide octahedra, and also discuss the research progress of two-dimensional Ruddlesden-Popper phase, low-dimensional defective phase lead-free perovskite compounds and non-perovskite compounds. Hoping this paper can provide an important reference for obtaining safe, stable and environmentally friendly next-generation optoelectronic materials.
2009年,有机无机杂化铅(Pb)基钙钛矿第一次被引入光伏领域[
研究者已经探索利用一系列低毒金属部分或完全取代Pb作为钙钛矿中的金属阳离子,如锡(Sn)、锗(Ge)、铜(Cu)、铋(Bi)和锑(Sb)[
典型三维钙钛矿的结构式为AIBIIX3。自然界中也存在A位和/或B位离子有序结构的有序型(A′1-xA″x)(B′1-yB″y)X3,如Ba4(NaSb3)O12;阴离子亏损型(AnBnX3n-1),如Sr2Fe2O5;富阴离子型(AnBnX3n+2),如Sr4Ta4O14。ABX3理想结构为等轴晶系,空间群为Pm3m,其中[BX6]八面体在三维空间内共角连接形成框架(
图1 (a)三维钙钛矿的一般结构;(b)常规nt-i-p器件原理图;(c)倒置p-i-n器件原理图。
Fig.1 (a)General structure of three-dimensional perovskite. (b)Schematic diagram of n-i-p devices. (c)Schematic diagram of inverted p-i-n device.
研究者提出可以通过容忍因子(Tolerance factor)(
(1) |
其中rA、rB、rX分别代表A位、B位和X位的离子半径。研究表明,Goldschmidt容忍因子t值(
PSCs的电池结构主要可以分为三类:平面异质结结构、介孔结构和介孔-平面异质结杂化结构。其中平面异质结结构相对简单。虽然钙钛矿膜的形貌质量无法控制,但其PSCs开路电压(VOC)比介孔结构的器件要高,效率提升的空间大。根据不同的钙钛矿层基底层,平面异质结结构又分正置n-i-p和倒置p-i-n结构(
Sn被认为是Pb的一种良好替代品,它已经在体相和薄膜太阳能电池中得到广泛的应用。卤化Sn钙钛矿的晶体结构与Pb基体系类似,它的直接带隙约为1.2~1.4 eV,室温下激子结合能低于25 meV,载流子扩散长度超过500 nm。这些特性十分有利于其在光电领域的应用。考虑到有机A位阳离子容易受热退化,Chen等首次制备了纯无机CsSnI3钙钛矿并将其用于结构为氧化铟锡/CsSnI3/Au/Ti层的肖特基太阳能电池(
图2 (a)~(b)CsSnI3基肖特基太阳能电池结构和能带图[
Fig.2 A schematic layer structure(a) and band diagram(b) of the Schottkysolar cell based on CsSnI3[
Yu等在FASnI3前驱体溶液中用FPEABr替代FAI引入二维相,将薄膜进行扫描电镜(SEM)测试观察后发现二维相位于三维晶粒的表面和晶界[
混合Sn-Pb基钙钛矿也降低了PSCs的毒性,为目前叠层PSCs追求高效率和稳定性提供了思路。在混合阳离子前驱体溶液中利用4-三氟甲基苯基铵(CF3-PA)调控载流子扩散长度,单结太阳能电池和叠层结构电池的PCE分别提高到了22.2%和26.4%。且封装条件下叠层PSCs在600 min后仍能保持90%以上的初始性能[
另外,用Sn替代Pb来降低钙钛矿毒性的研究思路还有待考量。有研究发现,将斑马鱼胚胎分别置于添加SnI2以及PbI2的环境中进行培养,SnI2环境中的胚胎死亡率更高。经进一步研究发现,导致胚胎的死亡及畸形原因不是Sn的重金属毒性,而是由于SnI2在水中释放了较多的HI导致水质pH值降低,酸碱度失衡[
Ge的毒性小,可以作为Pb的替代物。AGeI3(A=Cs+,MA+,FA+)可以结晶为三角畸变钙钛矿结构,带隙范围为1.6~2.2 eV[
选择合适的空穴传输材料(HTM)是提高Ge基PSCs器件性能、改善钙钛矿的空穴提取和传输的有效策略。Hima等利用SCAPS软件对MAGeI3基PSCs进行数值模拟后发现CuSbS2作为HTM的太阳电池器件效率达到23.58%[
钙钛矿中的二价金属离子BII可同时被单价和三价阳离子或四价阳离子和空位取代,形成双钙钛矿,其通式为A2BⅠBⅢX6或A2BⅣX6。绝大多数双钙钛矿的金属离子为主族元素,因为过渡族金属具有多种氧化态且d、f轨道不满,容易引入高浓度的缺陷态[
图3 (a)双钙钛矿Cs2AgBiB6的结构示意图,橙色、灰色、绿色和棕色球体分别代表Bi、Ag、Cs和Br原子[
Fig.3 (a)X-ray structure of the ordered double perovskite Cs2AgBiBr6. Orange, gray, turquoise, and brown spheres represent Bi, Ag, Cs and Br atoms, respectively[
Ruddlesden-Popper(R-P)化合物通常用分子式A2MIIX4表示,其原型是K2NiF4。R-P相中共顶金属卤化物八面体在二维上相互连接,层间被大型有机一价阳离子隔开。连接层间的作用力由弱范德华力和氢键共同提供,对其二者协同作用的研究有望提高二维R-P相PSCs的稳定性和PCE[
Sn或Ge常与较大的有机阳离子BA或PEA形成R-P相。将较小的有机阳离子用于二维Sn基或Ge基R-P相中能增加钙钛矿层数,同时降低激子结合能。并且R-P相热力学稳定性比三维钙钛矿强得多,在200 ℃以上都能表现出较好的热稳定性[
Cu2+半径小,共顶CuX6八面体层状结构通过铵基与卤化物之间的氢键以及有机部分的范德华力来连接[
MA2CuCl0.5Br3.5带隙较窄,且由于溴化物的存在,Cu2+部分还原为Cu+[59]。Cu基的纯溴化物Ruddlesden-Popper相PMA2CuBr4更加稳定,在相对湿度60%的空气中可以保持稳定7 d,器件PCE为0.2%[
与Cu类似,Fe2+的小离子半径(78 pm)在空间上阻碍了三维钙钛矿结构的形成。MA2FeX4为片层状Ruddlesden-Popper相,但(PEA)2FeCl4由于苯环p轨道堆积和金属卤素层扭曲,导致了非二维结构[
与三维钙钛矿结构类似,两个面同时进行取代可能形成双Ruddlesden-Popper相。长有机阳离子BA+形成的双Ruddlesden-Popper相(BA)4AgBiBr8的直接带隙为2.77 eV。但带隙会随生长过程中的压力改变而变化,压力增加,Bi—Br—Ag键角变小,Bi—Br、Ag—Br键长变短[
三维钙钛矿中心金属阳离子(例如VA族三价金属阳离子Bi3+和Sb3+)缺失产生的空隙也会导致金属卤化物八面体层之间的分离,形成低维钙钛矿缺陷结构(
图4 (a)三维钙钛矿(左)二维类钙钛矿(中)和双钙钛矿缺陷结构(右)示意图[
Fig.4 (a)Schematic illustration of 2D perovskite-like(middle) and double perovskite-like(right) defect structures derived from the 3D perovskite[
三价阳离子Bi3+作为M离子形成的A3Bi2IIIX9存在两种不同的相,分别是由层状共角八面体组成的二维相和由共面八面体组成的零维二聚体相。二者带隙上的区别在于二维材料为直接带隙,而零维化合物为间接带隙。从热力学上看,当A位阳离子或X位阴离子半径较小时优先形成二维多晶型物。例如,钾(K+)、铷(Rb+)或氨(NH4+)通常形成碘化铋基二维钙钛矿缺陷相[
另一种获得碘化铋基层状钙钛矿的方法是增加碘的比例,CsBi3I10为类似于BiI3的层状结构,其直接带隙为1.77 eV,吸收系数为1.4×105 cm-1,有希望应用于光伏产品。但迄今为止,器件仅达到1.05%的效率;可喜的是器件在环境条件下储存10 d后仍保持较好的稳定性[
锑(Sb)的价层电子结构和电子态密度类似于卤化铅钙钛矿。尺寸较小的Rb+、K+或NH4+作为A位阳离子时A3Sb2I9形成二维Sb基钙钛矿缺陷结构。Zuo等计算出(NH4)3Sb2I9的带隙为2.77 eV。(NH4)3Sb2I9应用于HTM为PEDOT∶PSS的器件效率为0.51%[
A2MIVX6中的金属卤化物八面体被空隙相互隔开形成零维钙钛矿结构。Sn基Cs2SnI6是目前研究较多的非铅零维结构。与三维钙钛矿CsSnI3相比,Cs2SnI6中有一半的Sn原子是空缺的,在碘化锡框架中形成零维结构。剩余的Sn原子需要从二价态氧化为四价态,以保持电荷平衡。由于Sn2+的不稳定性,空气环境中的B-γ-CsSnI3在室温下自发地转化为Cs2SnI6。Cs2SnI6的稳定性好且直接带隙为1.27~1.62 eV,显示出光伏应用的良好前景[
图5 (a)气态沉积和固态反应的两步沉积法生长Cs2SnI6薄膜示意图以及CsSnI3和Cs2SnI6的晶体结构[
Fig.5 (a)Schematic illustration of the growth of Cs2SnI6 film from CsSnI3 via a two-step deposition method based on solid state reaction[
研究较多的Bi基零维化合物有MA3Bi2I9和Cs3Bi2I9,其带隙分别为2.14 eV和2.0 eV[
图6 (a)NaVO2原型的晶体结构和卤化物AaBbXx Rudorffites结构[
Fig.6 (a)Crystal structures of the NaVO2 prototype oxide and AaBbXx halide Rudorffites[
Sb3+和Sb4+都能形成零维钙钛矿结构。零维二聚体相Sb基化合物MA3Sb2I9和Cs3Sb2I9分别具有1.95 eV和2.0 eV的间接带隙。前驱体溶液中HI的存在保证了零维结构含碘量,并提高了薄膜覆盖率。HI还使零维二聚体膜具有较大的晶粒尺寸,这对电荷传输性能和表面陷阱状态有利。添加30 µL/mL HI的MA3Sb2I9器件表现出优异的性能,实现了2.04%的PCE[
过渡金属作为M离子也可以形成零维钙钛矿缺陷结构A2MIVX6。Chen等利用一种简单的低温蒸气法制备了高质量Cs2TiBr6薄膜,其间接带隙值为1.78 eV,载流子扩散长度超过100 nm,应用于平面异质结PSCs中PCE高达3.3%[
由[BX6]八面体在三维空间内共角连接而形成的Sn基或Ge基无铅钙钛矿都或多或少存在稳定性差的问题。因此,研究人员将目光放在与钙钛矿结构相似的非钙钛矿类化合物上,期望这类化合物应用于太阳能电池器件能在提高其稳定性的基础上实现良好的光电性能。Rudorffites一词源于NaVO2(
纯硫化Sb基Rudorffites NaSbS2的间接带隙为1.22 eV,光学吸收范围大,有希望用于光伏产品[
Device configuration | VOC /V | JSC/ (mA·cm-2) | FF | PCE/% | Year | Ref |
---|---|---|---|---|---|---|
ITO/CsSnI3/PCBM/BCP/Al | 0.50 | 9.89 | 0.68 | 3.56 | 2016 |
[ |
FTO/TiO2/CsSnI3/PTAA/Au | 0.44 | 18.5 | 0.53 | 4.3 | 2018 |
[ |
FTO/TiO2/CsSnI3/Spiro‑OMeTAD/Ag | 0.97 | 29.67 | 0.7 | 20.13 | 2021 |
[ |
FTO/c‑TiO2/mp‑TiO2/MASnI3/Spiro‑OMeTAD/Au | 0.88 | 16.8 | 0.42 | 6.4 | 2014 |
[ |
FTO/c‑TiO2/mp‑TiO2/MASnI3/Au | 0.32 | 21.4 | 0.46 | 3.15 | 2015 |
[ |
ITO/PEDOT∶PSS/MASnI3/PC60BM/Ag | 0.38 | 14.1 | 0.49 | 2.6 | 2018 |
[ |
FTO/c‑TiO2/mp‑TiO2/MASnI3/PTAA/Au | 0.49 | 22.91 | 0.64 | 7.13 | 2019 |
[ |
ITO/PEDOS∶PSS/MASnI3/PCBM/PEI/Ag | 0.57 | 12.47 | 0.44 | 3.13 | 2020 |
[ |
FTO/c‑TiO2/mp‑TiO2/FASnI3/Spiro‑OMeTAD/Au | 0.24 | 24.45 | 0.36 | 2.1 | 2015 |
[ |
ITO/PEDOT∶PSS/FASnI3/C60/BCP/Al | 0.53 | 24.1 | 0.71 | 9.0 | 2017 |
[ |
ITO/NiOx/FASnI3/PCBM/BCP/Ag | 0.61 | 22.0 | 0.70 | 9.41 | 2018 |
[ |
ITO/PEDOT∶PSS/FASnI3/C60/BCP/Ag | 0.56 | 23.34 | 0.74 | 9.61 | 2019 |
[ |
ITO/PEDOT∶PSS/FASnI3/ICBA/BCP/Ag | 0.94 | 17.4 | 0.75 | 12.4 | 2020 |
[ |
ITO/PEDOT∶PSS/FASnI3/PCBM/PEI/Ag | 0.64 | 15.36 | 0.56 | 5.51 | 2020 |
[ |
ITO/PEDOT∶PSS/FASnI3/C60/BCP/Ag | 0.76 | 23.5 | 0.64 | 11.4 | 2020 |
[ |
ITO/PEDOT∶PSS/FASnI3/ICBA/BCP/Ag | 0.91 | 20.06 | 0.77 | 14.63 | 2021 |
[ |
ITO/PEDOT∶PSS/FA0.7MA0.3Pb0.5Sn0.5I3/C60/BCP/Cu | 0.84 | 33 | 0.8 | 22.2 | 2022 |
[ |
ITO/PEDOT∶PSS/MAGeI2.7Br0.3/PC70BM/Ag | 0.45 | 2.8 | 0.45 | 0.57 | 2018 |
[ |
FTO/TiO2/Cs2AgBiBr6/Spiro‑OMeTAD/Au | 0.98 | 3.93 | 0.63 | 2.4 | 2017 |
[ |
ITO/SnO2/Cs2AgBiBr6/P3HT/Au | 0.95 | 1.50 | 0.60 | 1.44 | 2018 |
[ |
FTO/c‑TiO2/Cs2AgBiBr6/Spiro‑OMeTAD/MoO3/Ag | 1.01 | 3.82 | 0.65 | 2.51 | 2019 |
[ |
FTO/c‑TiO2/mp‑TiO2/Cs2AgBiBr6/Carbon | 1.177 | 3.15 | 0.69 | 2.57 | 2020 |
[ |
FTO/c‑TiO2/mp‑TiO2/Cs2AgBiBr6/Spiro‑OMeTAD/Au | 1.09 | 3.2 | 0.68 | 2.3 | 2021 |
[ |
ITO/PEDOT∶PSS/AVA2FAn‑1SnnI3n+1/PCBM/BCP/Ag | 0.61 | 21 | 0.68 | 8.71 | 2019 |
[ |
FTO/TiO2/MA2CuCl4/Spiro‑OMeTAD/Au | 0.56 | 8.12 | 0.52 | 2.41 | 2018 |
[ |
本文介绍了不同结构、不同维度的Sn基、Ge基以及其他金属基化合物的光电性能及其在太阳能电池中的应用。迄今为止,大多数非铅钙钛矿的研究仍处于基础研究和早期开发阶段,器件的应用受到效率、稳定性、薄膜形态等一系列因素的限制。在众多非铅钙钛矿中,Sn基PSCs现在达到了14.8%的最高效率[
本文专家审稿意见及作者回复内容的下载地址:http://cjl.lightpublishing.cn/thesisDetails#10.37188/CJL.20220050.
KOJIMA A,TESHIMA K,SHIRAI Y,et al. Organometal halide perovskites as visible‑light sensitizers for photovoltaic cells [J]. J. Am. Chem. Soc., 2009,131(17):6050-6051. doi: 10.1021/ja809598r [百度学术]
MIN H,LEE D Y,KIM J,et al. Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes [J]. Nature, 2021,598(7881):444-450. doi: 10.1038/s41586-021-03964-8 [百度学术]
杨立群,马晓辉,郑士建,等. 柔性钙钛矿太阳能电池中电极材料和电荷传输材料的研究进展 [J]. 发光学报, 2020,41(10):1175-1194. doi: 10.37188/CJL.20200192 [百度学术]
YANG L Q,MA X H,ZHENG S J,et al. Research progress on electrode materials and charge transport materials in flexible perovskite solar cells [J]. Chin. J. Lumin., 2020,41(10):1175-1194. (in Chinese). doi: 10.37188/CJL.20200192 [百度学术]
WALSH A,SCANLON D O,CHEN S Y,et al. Self-regulation mechanism for charged point defects in hybrid halide perovskites [J]. Angew. Chem., 2015,127(6):1811-1814. doi: 10.1002/ange.201409740 [百度学术]
BABAYIGIT A,ETHIRAJAN A,MULLER M,et al. Toxicity of organometal halide perovskite solar cells [J]. Nat.Mater., 2016,15(3):247-251. doi: 10.1038/nmat4572 [百度学术]
BABAYIGIT A,THANH D D,ETHIRAJAN A,et al. Assessing the toxicity of Pb-and Sn-based perovskite solar cells in model organism Daniorerio [J]. Sci.Rep., 2016,6(1):18721-1-11. doi: 10.1038/srep18721 [百度学术]
LI J M,CAO H L,JIAO W B,et al. Biological impact of lead from halide perovskites reveals the risk of introducing a safe threshold [J]. Nat. Commun., 2020,11(1):310-1-5. doi: 10.1038/s41467-019-13910-y [百度学术]
BARTESAGHI D,RAY A,JIANG J K,et al. Partially replacing Pb2+ by Mn2+ in hybrid metal halide perovskites:structural and electronic properties [J]. APL Mater., 2018,6(12):121106-1-11. doi: 10.1063/1.5060953 [百度学术]
LENG M Y,YANG Y,ZENG K,et al. All-inorganic bismuth-based perovskite quantum dots with bright blue photoluminescence and excellent stability [J]. Adv. Funct. Mater., 2018,28(1):1704446-1-11. doi: 10.1002/adfm.201704446 [百度学术]
SHAO S Y,LIU J,PORTALE G,et al. Highly reproducible Sn-based hybrid perovskite solar cells with 9% efficiency [J]. Adv. Energy Mater., 2018,8(4):1702019-1-10. doi: 10.1002/aenm.201702019 [百度学术]
CAO J P,TAI Q D,YOU P,et al. Enhanced performance of tin-based perovskite solar cells induced by an ammonium hypophosphite additive [J]. J. Mater. Chem. A, 2019,7(46):26580-26585. doi: 10.1039/c9ta08679j [百度学术]
TSAREV S,BOLDYREVA A G,LUCHKIN S Y,et al. Hydrazinium-assisted stabilisation of methylammonium tin iodide for lead-free perovskite solar cells [J]. J. Mater. Chem. A, 2018,6(43):21389-21395. doi: 10.1039/c8ta07699e [百度学术]
SAPAROV B,MITZI D B. Organic⁃inorganic perovskites:structural versatility for functional materials design [J]. Chem. Rev., 2016,116(7):4558-4596. doi: 10.1021/acs.chemrev.5b00715 [百度学术]
CORTECCHIA D,DEWI H A,YIN J,et al. Lead-free MA2CuClxBr4–x hybrid perovskites [J]. Inorg. Chem., 2016,55(3):1044-1052. doi: 10.1021/acs.inorgchem.5b01896 [百度学术]
RANDALL C A,BHALLA A S,SHROUT T R,et al. Classification and consequences of complex lead perovskite ferroelectrics with regard to B-site cation order [J]. J. Mater. Res.,1990,5(4):829-834. doi: 10.1557/jmr.1990.0829 [百度学术]
GOLDSCHMIDT V M. Die gesetze der krystallochemie [J]. Naturwissenschaften,1926,14(21):477-485. doi: 10.1007/bf01507527 [百度学术]
URIBE J I,RAMIREZ D,OSORIO-GUILLÉN J M,et al. CH3NH3CaI3 perovskite:synthesis,characterization,and first-principles studies [J]. J. Phys. Chem. C, 2016,120(30):16393-16398. doi: 10.1021/acs.jpcc.6b04207 [百度学术]
KIESLICH G,SUN S J,CHEETHAM A K. Solid-state principles applied to organic-inorganic perovskites:new tricks for an old dog [J]. Chem. Sci., 2014,5(12):4712-4715. doi: 10.1039/C4SC02211D [百度学术]
SHAHIDUZZAMAN M,MUSLIH E Y,HASAN A K M,et al. The benefits of ionic liquids for the fabrication of efficient and stable perovskite photovoltaics [J]. Chem. Eng. J., 2021,411:128461-1-15. doi: 10.1016/j.cej.2021.128461 [百度学术]
CHEN Z,WANG J J,REN Y H,et al. Schottky solar cells based on CsSnI3 thin-films [J]. Appl. Phys. Lett., 2012,101(9):093901-1-4. doi: 10.1063/1.4748888 [百度学术]
LIN S,ZHANG B P,LÜ T Y,et al. Inorganic lead-free B-γ-CsSnI3 perovskite solar cells using diverse electron-transporting materials:a simulation study [J]. ACS Omega, 2021,6(40):26689-26698. doi: 10.1021/acsomega.1c04096 [百度学术]
PENG L P,XIE W. Theoretical and experimental investigations on the bulk photovoltaic effect in lead-free perovskites MASnI3 and FASnI3 [J]. RSC Adv., 2020,10(25):14679-14688. doi: 10.1039/d0ra02584d [百度学术]
SHI TT,ZHANG H S,MENG W W,et al. Effects of organic cations on the defect physics of tin halide perovskites [J]. J. Mater. Chem. A, 2017,5(29):15124-15129. doi: 10.1039/c7ta02662e [百度学术]
TAKAHASHI Y,OBARA R,LIN Z Z,et al. Charge-transport in tin-iodide perovskite CH3NH3SnI3:origin of high conductivity [J]. Dalton Trans., 2011,40(20):5563-5568. doi: 10.1039/c0dt01601b [百度学术]
WANG F,MA J L,XIE F Y,et al. Organic cation-dependent degradation mechanism of organotin halide perovskites [J]. Adv. Funct. Mater., 2016,26(20):3417-3423. doi: 10.1002/adfm.201505127 [百度学术]
WANG C B,GU F D,ZHAO Z R,et al. Self-repairing tin-based perovskite solar cells with a breakthrough efficiency over 11% [J]. Adv. Mater., 2020,32(31):1907623-1-9. doi: 10.1002/adma.201907623 [百度学术]
MARSHALL K P,WALKER M,WALTON R I,et al. Enhanced stability and efficiency in hole-transport-layer-free CsSnI3 perovskite photovoltaics [J]. Nat. Energy, 2016,1(12):16178-1-9. doi: 10.1038/nenergy.2016.178 [百度学术]
YU B B,CHEN Z H,ZHU Y D,et al. Heterogeneous 2D/3D Tin-halides perovskite solar cells with certified conversion efficiency breaking 14% [J]. Adv. Mater., 2021,33(36):2102055-1-10. doi: 10.1002/adma.202102055 [百度学术]
JIANG X Y,WANG F,WEI Q,et al. Ultra-high open-circuit voltage of tin perovskite solar cells via an electron transporting layer design [J]. Nat. Commun., 2020,11(1):1245-1-7. doi: 10.1038/s41467-020-15078-2 [百度学术]
SONG T B,CHEN Q,ZHOU H P,et al. Perovskite solar cells:film formation and properties [J]. J. Mater. Chem. A, 2015, 3(17):9032-9050. doi: 10.1039/c4ta05246c [百度学术]
JIANG X Y, LI H S, ZHOU Q L, et al. One-step synthesis of SnI2·(DMSO)xadducts for high-performance tin perovskite solar cells [J]. J. Am. Chem. Soc., 2021, 143(29):10970-10976. doi: 10.1021/jacs.1c03032 [百度学术]
LIU X, WANG Y B, WU T H, et al. Efficient and stable tin perovskite solar cells enabled by amorphous-polycrystalline structure [J]. Nat. Commun., 2020, 11(1):2678-1-7. doi: 10.1038/s41467-020-16561-6 [百度学术]
LIN R X, XU J, WEI M Y, et al. All-perovskite tandem solar cells with improved grain surface passivation [J]. Nature, 2022, 603(7899):73-78. doi: 10.1038/s41586-021-04372-8 [百度学术]
STOUMPOS C C, FRAZER L,CLARK D J,et al. Hybrid germanium iodide perovskite semiconductors:active lone pairs,structural distortions,direct and indirect energy gaps,and strong nonlinear optical properties [J]. J. Am. Chem. Soc.,2015,137(21):6804-6819. doi: 10.1021/jacs.5b01025 [百度学术]
KRISHNAMOORTHY T,DING H,YAN C,et al. Lead-free germanium iodide perovskite materials for photovoltaic applications [J]. J. Mater. Chem. A, 2015,3(47):23829-23832. doi: 10.1039/c5ta05741h [百度学术]
SUN P P,LI Q S,YANG L N,et al. Theoretical insights into a potential lead-free hybrid perovskite:substituting Pb2+ with Ge2+ [J]. Nanoscale, 2016,8(3):1503-1512. doi: 10.1039/c5nr05337d [百度学术]
HIMA A,LAKHDAR N J. Enhancement of efficiency and stability of CH3NH3GeI3 solar cells with CuSbS2 [J]. Opt. Mater., 2020,99:109607-1-4. doi: 10.1016/j.optmat.2019.109607 [百度学术]
KOPACIC I,FRIESENBICHLER B,HOEFLER S F,et al. Enhanced performance of germanium halide perovskite solar cells through compositional engineering [J]. ACS Appl. Energy Mater., 2018,1(2):343-347. doi: 10.1021/acsaem.8b00007 [百度学术]
DING J N,CHEN M J,QIU J H,et al. Photovoltaic properties of ferroelectric solar cells based on polycrystalline BiFeO3 films sputtered on indium tin oxide substrates [J]. Sci. China Phys.,Mech. Astron., 2015,58(3):1-6. doi: 10.1007/s11433-014-5552-8 [百度学术]
ZHAO S,YAMAMOTO K,IIKUBO S,et al. First-principles study of electronic and optical properties of lead-free double perovskites Cs2NaBX6(B= Sb,Bi; X= Cl,Br,I) [J]. J. Phys. Chem. Solids, 2018,117:117-121. doi: 10.1016/j.jpcs.2018.02.032 [百度学术]
ZHAO X G,YANG J H,FU Y H,et al. Design of lead-free inorganic halide perovskites for solar cells via cation-transmutation [J]. J. Am. Chem. Soc., 2017,139(7):2630-2638. doi: 10.1021/jacs.6b09645 [百度学术]
XIAO Z W,DU K Z,MENG W W,et al. Intrinsic instability of Cs2In(Ⅰ)M(Ⅲ)X6(M=Bi,Sb; X=alogen) double perovskites:a combined density functional theory and experimental study [J]. J. Am. Chem. Soc., 2017,139(17):6054-6057. doi: 10.1021/jacs.7b02227 [百度学术]
MCCLURE E T,BALL M R,WINDL W,et al. Cs2AgBiX6(X=Br,Cl):new visible light absorbing,lead-free halide perovskite semiconductors [J]. Chem. Mater., 2016,28(5):1348-1354. doi: 10.1021/acs.chemmater.5b04231 [百度学术]
SLAVNEY A H,HU T,LINDENBERG A M,et al. A bismuth-halide double perovskite with long carrier recombination lifetime for photovoltaic applications [J]. J. Am. Chem. Soc., 2016,138(7):2138-2141. doi: 10.1021/jacs.5b13294 [百度学术]
WU C C,ZHANG Q H,LIU Y,et al. The dawn of lead-free perovskite solar cell:highly stable double perovskite Cs2AgBiBr6 film [J]. Adv. Sci., 2018,5(3):1700759-1-8. doi: 10.1002/advs.201700759 [百度学术]
DAEM N,DEWALQUE J,LANG F,et al. Spray-coated lead-free Cs2AgBiBr6 double perovskite solar cells with high open-circuit voltage [J]. Solar RRL, 2021,5(9):2100422-1-8. doi: 10.1002/solr.202100422 [百度学术]
SLAVNEY A H,LEPPERT L,BARTESAGHI D,et al. Defect-induced band-edge reconstruction of a bismuth-halide double perovskite for visible-light absorption [J]. J. Am. Chem. Soc., 2017, 139(14):5015-5018. doi: 10.1021/jacs.7b01629 [百度学术]
ZHANG Z H, WU C C,WANG D,et al. Efficient nonlead double perovskite solar cell with multiple hole transport layers [J]. ACS Appl. Energy Mater., 2020,3(10):9594-9599. doi: 10.1021/acsaem.0c01066 [百度学术]
YANG Y,LIU C,CAI M L,et al. Dimension-controlled growth of antimony-based perovskite-like halides for lead-free and semitransparent photovoltaics [J]. ACS Appl. Mater. Interfaces, 2020,12(14):17062-17069. doi: 10.1021/acsami.0c00681 [百度学术]
REN H,YU S D,CHAO L F,et al. Efficient and stable Ruddlesden⁃Popper perovskite solar cell with tailored interlayer molecular interaction [J]. Nat. Photonics, 2020,14(3):154-163. doi: 10.1038/s41566-019-0572-6 [百度学术]
MA L,JU M G,DAI J,et al. Tin and germanium based two-dimensional Ruddlesden-Popper hybrid perovskites for potential lead-free photovoltaic and photoelectronic applications [J]. Nanoscale, 2018,10(24):11314-11319. doi: 10.1039/c8nr03589j [百度学术]
MITZI D B. Synthesis,crystal structure,and optical and thermal properties of (C4H9NH3)2MI4(M= Ge,Sn,Pb) [J]. Chem. Mater.,1996,8(3):791-800. doi: 10.1021/cm9505097 [百度学术]
CAO D H,STOUMPOS C C,YOKOYAMA T,et al. Thin films and solar cells based on semiconducting two-dimensional Ruddlesden-Popper (CH3(CH2)3NH3)2(CH3NH3)n-1SnnI3n+1 perovskites [J]. ACS Energy Lett., 2017,2(5):982-990. doi: 10.1021/acsenergylett.7b00202 [百度学术]
XU H Y,JIANG Y Z,HE T W,et al. Orientation regulation of tin-based reduced-dimensional perovskites for highly efficient and stable photovoltaics [J]. Adv. Funct. Mater., 2019,29(47):1807696-1-11. doi: 10.1002/adfm.201807696 [百度学术]
CHENG P F,WU T,ZHANG J W,et al. (C6H5C2H4NH3)2GeI4:a layered two-dimensional perovskite with potential for photovoltaic applications [J]. J. Phys. Chem. Lett., 2017,8(18):4402-4406. doi: 10.1021/acs.jpclett.7b01985 [百度学术]
CUI X P,JIANG K J,HUANG J H,et al. Cupric bromide hybrid perovskite heterojunction solar cells [J]. Synth. Met., 2015, 209:247-250. doi: 10.1016/j.synthmet.2015.07.013 [百度学术]
CHENG Z Y,LIN J. Layered organic-inorganic hybrid perovskites:structure,optical properties,film preparation,patterning and templating engineering [J]. CrystEngComm, 2010,12(10):2646-2662. doi: 10.1039/c001929a [百度学术]
POLYAKOV A O,ARKENBOUT A H,BAAS J,et al. Coexisting ferromagnetic and ferroelectric order in a CuCl4-based organic-inorganic hybrid [J]. Chem. Mater., 2012,24(1):133-139. doi: 10.1021/cm2023696 [百度学术]
BOIX P P,AGARWALA S,KOH T M,et al. Perovskite solar cells:beyond methylammonium lead iodide [J]. J. Phys. Chem. Lett., 2015,6(5):898-907. doi: 10.1021/jz502547f [百度学术]
LI X L,LI B C,CHANG J H,et al. (C6H5CH2NH3)2CuBr4:a lead-free,highly stable two-dimensional perovskite for solar cell applications [J]. ACS Appl. Energy Mater., 2018,1(6):2709-2716. doi: 10.1021/acsaem.8b00372 [百度学术]
ELSEMAN A M,SHALAN A E,SAJID S,et al. Copper-substituted lead perovskite materials constructed with different halides for working (CH3NH3)2CuX4-based perovskite solar cells from experimental and theoretical view [J]. ACS Appl. Mater. Interfaces, 2018,10(14):11699-11707. doi: 10.1021/acsami.8b00495 [百度学术]
BOIX P P,NONOMURA K,MATHEWS N,et al. Current progress and future perspectives for organic/inorganic perovskite solar cells [J]. Mater. Today, 2014,17(1):16-23. doi: 10.1016/j.mattod.2013.12.002 [百度学术]
LI C,LU X,DING W,et al. Formability of ABX3(X=F,Cl,Br,I) halide perovskites [J]. Acta Crystallogr. B, 2008,64(Pt 6):702-707. doi: 10.1107/s0108768108032734 [百度学术]
FANG Y Y,ZHANG L,WU L W,et al. Pressure-induced emission(PIE) and phase transition of a two-dimensional halide double perovskite (BA)4AgBiBr8(BA=CH3(CH2)3NH3+) [J]. Angew. Chem. Int. Ed., 2019,58(43):15249-15253. doi: 10.1002/anie.201906311 [百度学术]
CONNOR B A,LEPPERT L,SMITH M D,et al. Layered halide double perovskites:dimensional reduction of Cs2AgBiBr6 [J]. J. Am. Chem. Soc., 2018,140(15):5235-5240. doi: 10.1021/jacs.8b01543 [百度学术]
CASTRO-CASTRO L M,GULOY A M. Organic-based layered perovskites of mixed-valent gold(Ⅰ)/gold (Ⅲ) iodides [J]. Angew. Chem., 2003,115(24):2877-2880. doi: 10.1002/anie.200350929 [百度学术]
GLÜCK N,BEIN T. Prospects of lead-free perovskite-inspired materials for photovoltaic applications [J]. Energy Environ. Sci., 2020,13(12):4691-4716. doi: 10.1039/d0ee01651a [百度学术]
LEHNER A J,FABINI D H,EVANS H A,et al. Crystal and electronic structures of complex bismuth iodides A3Bi2I9(A= K,Rb,Cs) related to perovskite:aiding the rational design of photovoltaics [J]. Chem. Mater., 2015,27(20):7137-7148. doi: 10.1021/acs.chemmater.5b03147 [百度学术]
PARK J G,HONG K H. Dual-site compositional engineering of bismuth-based halide perovskites for stable and efficient lead-free solar cells [J]. J. Phys. Chem. C, 2021,125(24):13138-13145. doi: 10.1021/acs.jpcc.1c02057 [百度学术]
JOHANSSON M B,ZHU H M,JOHANSSON E M J. Extended photo-conversion spectrum in low-toxic bismuth halide perovskite solar cells [J]. J. Phys. Chem. Lett., 2016,7(17):3467-3471. doi: 10.1021/acs.jpclett.6b01452 [百度学术]
TONG X W,KONG W Y,WANG Y Y,et al. High-performance red-light photodetector based on lead-free bismuth halide perovskite film [J]. ACS Appl. Mater. Interfaces, 2017,9(22):18977-18985. doi: 10.1021/acsami.7b04616 [百度学术]
XIONG Z,HU W,SHE Y,et al. Air-stable lead-free perovskite thin film based on CsBi3I10 and its application in resistive switching devices [J]. ACS Appl. Mater. Interfaces, 2019,11(33):30037-30044. doi: 10.1021/acsami.9b09080 [百度学术]
ZUO C T,DING L M. Lead-free perovskite materials (NH4)3Sb2IxBr9-x [J]. Angew.Chem. Int. Ed., 2017,56(23):6528-6532. doi: 10.1002/anie.201702265 [百度学术]
UMAR F,ZHANG J,JIN Z X,et al. Dimensionality controlling of Cs3Sb2I9 for efficient all-inorganic planar thin film solar cells by HCl-assisted solution method [J]. Adv. Opt. Mater., 2019,7(5):1801368-1-9. doi: 10.1002/adom.201801368 [百度学术]
ULLAH S,WANG J M,YANG P X,et al. Lead-free Cs2SnI6 perovskites for optoelectronic applications:recent developments and perspectives [J]. Solar RRL, 2021,5(5):2000830-1-26. doi: 10.1002/solr.202100172 [百度学术]
QIU X F,CAO B Q,YUAN S,et al. From unstable CsSnI3 to air-stable Cs2SnI6:a lead-free perovskite solar cell light absorber with bandgap of 1.48 eV and high absorption coefficient [J]. Solar Energy Mater. Solar Cells, 2017,159:227-234. doi: 10.1016/j.solmat.2016.09.022 [百度学术]
LEE B,KRENSELEWSKI A,BAIK S I,et al. Solution processing of air-stable molecular semiconducting iodosalts,Cs2SnI6-xBrx,for potential solar cell applications [J]. Sustainable Energy Fuels, 2017,1(4):710-724. doi: 10.1039/c7se00100b [百度学术]
AHMAD K,KUMAR P,MOBIN S M. Inorganic Pb-free perovskite light absorbers for efficient perovskite solar cells with enhanced performance [J]. Chem. Asian J., 2020,15(18):2859-2863. doi: 10.1002/asia.202000680 [百度学术]
BAI F,HU Y H,HU Y Q,et al. Lead-free,air-stable ultrathin Cs3Bi2I9 perovskite nanosheets for solar cells [J]. Solar Energy Mater. Solar Cells, 2018,184:15-21. doi: 10.1016/j.solmat.2018.04.032 [百度学术]
JAIN S M,PHUYAL D,DAVIES M L,et al. An effective approach of vapour assisted morphological tailoring for reducing metal defect sites in lead-free,(CH3NH3)3Bi2I9 bismuth-based perovskite solar cells for improved performance and long-term stability [J]. Nano Energy, 2018,49:614-624. doi: 10.1016/j.nanoen.2018.05.003 [百度学术]
BOOPATHI K M,KARUPPUSWAMY P,SINGH A,et al. Solution-processable antimony-based light-absorbing materials beyond lead halide perovskites [J]. J. Mater. Chem. A, 2017,5(39):20843-20850. doi: 10.1039/c7ta06679a [百度学术]
KARUPPUSWAMY P,BOOPATHI K M,MOHAPATRA A,et al. Role of a hydrophobic scaffold in controlling the crystallization of methylammonium antimony iodide for efficient lead-free perovskite solar cells [J]. Nano Energy, 2018,45:330-336. doi: 10.1016/j.nanoen.2017.12.051 [百度学术]
LI Y B,XU Z Y,LIU X T,et al. Two heteromorphic crystals of antimony-based hybrids showing tunable optical band gaps and distinct photoelectric responses [J]. Inorg. Chem., 2019,58(9):6544-6549. doi: 10.1021/acs.inorgchem.9b00718 [百度学术]
ZHANG R L,MAO X,YANG Y,et al. Air-stable,lead-free zero-dimensional mixed bismuth-antimony perovskite single crystals with ultra-broadband emission [J]. Angew. Chem. Int. Ed., 2019,58(9):2725-2729. doi: 10.1002/anie.201812865 [百度学术]
CHEN M,JU M G,CARL A D,et al. Cesium titanium(Ⅳ) bromide thin films based stable lead-free perovskite solar cells [J]. Joule, 2018,2(3):558-570. doi: 10.1016/j.joule.2018.01.009 [百度学术]
EUVRARD J,WANG X M,LI T Y,et al. Is Cs2TiBr6 a promising Pb-free perovskite for solar energy applications? [J]. J. Mater. Chem. A, 2020,8(7):4049-4054. doi: 10.1039/c9ta13870f [百度学术]
SAKAI N,HAGHIGHIRAD A A,FILIP M R,et al. Solution-processed cesium hexabromopalladate(Ⅳ),Cs2PdBr6,for optoelectronic applications [J]. J. Am. Chem. Soc., 2017,139(17):6030-6033. doi: 10.1021/jacs.6b13258 [百度学术]
TURKEVYCH I,KAZAOUI S,ITO E,et al. Photovoltaic rudorffites:lead-free silver bismuth halides alternative to hybrid lead halide perovskites [J]. ChemSusChem, 2017,10(19):3754-3759. doi: 10.1002/cssc.201700980 [百度学术]
ZHANG Q H,WU C C,QI X,et al. Photovoltage approaching 0.9 V for planar heterojunction silver bismuth iodide solar cells with Li-TFSI additive [J]. ACS Appl. Energy Mater., 2019,2(5):3651-3656. doi: 10.1021/acsaem.9b00366 [百度学术]
PAI N,LU J F,GENGENBACH T R,et al. Silver bismuth sulfoiodide solar cells:tuning optoelectronic properties by sulfide modification for enhanced photovoltaic performance [J]. Appl. Energy Mater., 2019,9(5):1803396-1-11. doi: 10.1002/aenm.201803396 [百度学术]
SUN J F,SINGH D J. Electronic properties,screening,and efficient carrier transport in NaSbS2 [J]. Phys. Rev. Appl., 2017,7(2):024015-1-6. doi: 10.1103/physrevapplied.7.024015 [百度学术]
RAHAYU S U,CHOU C L,SURIYAWONG N,et al. Sodium antimony sulfide(NaSbS2):turning an unexpected impurity into a promising,environmentally friendly novel solar absorber material [J]. APL Mater., 2016,4(11):116103-1-7. doi: 10.1063/1.4967206 [百度学术]
RAMACHANDRAN A A,KRISHNAN B,AVELLANEDA D A,et al. Development of lead-free Cu2BiI5 rudorffite thin films for visible light photodetector application [J]. Appl. Surf. Sci., 2021,564:150438-1-10. doi: 10.1016/j.apsusc.2021.150438 [百度学术]
HEO J H,KIM J,KIM H,et al. Roles of SnX2(X,F,Cl,Br) additives in tin-based halide perovskites toward highly efficient and stable lead-free perovskite solar cells [J]. J. Phys. Chem. Lett., 2018,9(20):6024-6031. doi: 10.1021/acs.jpclett.8b02555 [百度学术]
NOEL N K,STRANKS S D,ABATE A,et al. Lead-free organic-inorganic tin halide perovskites for photovoltaic applications [J]. Energy Environ. Sci., 2014,7(9):3061-3068. doi: 10.1039/c4ee01076k [百度学术]
HAO F,STOUMPOS C C,GUO P J,et al. Solvent-mediated crystallization of CH3NH3SnI3 films for heterojunction depleted perovskite solar cells [J]. J. Am. Chem. Soc., 2015,137(35):11445-11452. doi: 10.1021/jacs.5b06658 [百度学术]
LI F Z,ZHANG C S,HUANG J H,et al. A cation-exchange approach for the fabrication of efficient methylammonium tin iodide perovskite solar cells [J]. Angew. Chem. Int. Ed., 2019,58(20):6688-6692. doi: 10.1002/anie.201902418 [百度学术]
KOH T M,KRISHNAMOORTHY T,YANTARA N,et al. Formamidinium tin-based perovskite with low Eg for photovoltaic applications [J]. J. Mater. Chem. A, 2015,3(29):14996-15000. doi: 10.1039/c5ta00190k [百度学术]
WANG F,JIANG X Y,CHEN H,et al. 2D-quasi-2D-3D hierarchy structure for tin perovskite solar cells with enhanced efficiency and stability [J]. Joule, 2018,2(12):2732-2743. doi: 10.1016/j.joule.2018.09.012 [百度学术]
RAN C X,GAO W Y,LI J R,et al. Conjugated organic cations enable efficient self-healing FASnI3 solar cells [J]. Joule, 2019,3(12):3072-3087. doi: 10.1016/j.joule.2019.08.023 [百度学术]
GREUL E,PETRUS M L,BINEK A,et al. Highly stable,phase pure Cs2AgBiBr6 double perovskite thin films for optoelectronic applications [J]. J. Mater. Chem. A, 2017,5(37):19972-19981. doi: 10.1039/c7ta06816f [百度学术]
IGBARI F,WANG R,WANG Z K,et al. Composition stoichiometry of Cs2AgBiBr6 films for highly efficient lead-free perovskite solar cells [J]. Nano Lett., 2019,19(3):2066-2073. doi: 10.1021/acs.nanolett.9b00238 [百度学术]
LI J B,DUAN J L,DU J,et al. Alkali metal ion-regulated lead-free,all-inorganic double perovskites for HTM-free,carbon-based solar cells [J]. ACS Appl. Mater. Interfaces, 2020,12(42):47408-47415. doi: 10.1021/acsami.0c11770 [百度学术]
660
浏览量
1923
下载量
6
CSCD
相关文章
相关作者
相关机构