图1 (a)BaMgSiO4∶Yb3+,Tb3+陶瓷在980 nm激发下的上转换发光光谱随着254 nm紫外光辐照时间的变化;(b)色心和发光中心的形成;(c)上转换发光调控机理;BaMgSiO4∶Yb3+,Tb3+陶瓷在254 nm光照前(d)和光照16 min后(e)的荧光寿命[
收稿日期:2021-10-14,
修回日期:2021-10-30,
纸质出版日期:2022-04-01
移动端阅览
引用本文
阅读全文PDF
无机稀土发光材料在照明、显示、激光和生物医学等领域有着极其广泛的应用。对荧光性能的调控有利于拓展其在温度传感、防伪识别、光开关、光存储等领域的应用。传统的荧光调控方式包括设计核壳结构、改变材料成分控制晶体场、改变稀土离子的掺杂类型或浓度从而控制能量传递等。然而,这些调控方式难以实现荧光性能的可逆调控,限制了其实际应用。对比传统的调控方式,材料在电场、热场或光场等外场刺激下可产生变色效应,通过变色效应可以实现对其荧光性能的可逆调控从而扩展其应用。本文主要综述了在电场、热场和光场刺激下,无机稀土发光材料的变色效应对其荧光性能的可逆调控及应用。
Inorganic rare-earth luminescent materials are widely used in lighting, display, laser and biomedicine. The fluorescence modulation is beneficial to expand the applications in temperature sensing, anti-counterfeiting, optical switch, optical storage, et al. However, the traditional fluorescence modulation methods such as designing the core and shell structure, changing the material composition to control the crystal field, and changing the doping type or concentration of rare earth ions to control the energy transfer are difficult to achieve reversible modulation of fluorescence properties, limiting their practical applications. Compared with these traditional methods, the color of materials can change under external stimulation, such as electric field, thermal field and light field. The reversible fluorescence modulation based on the chromic effect could expand the applications. In this paper, the reversible modulation based on chromic effect under electric field, thermal field or light field stimulation in inorganic rare-earth luminescent materials and their applications were mainly reviewed.
无机稀土发光材料通常用于照明、显示、激光和生物医学等领域[
对比以上发光调控方式,研究发现材料在电场、热场、光场等外场刺激下能够发生荧光性能的改变。例如,La2MoO6∶Yb3+,Er3+荧光粉在热场刺激下的交叉弛豫导致上转换发光强度和颜色发生变化,为光学测温提供了新的策略[
在荧光调控过程中,可逆性和可重复性在实际应用中有着极其重要的作用,一些特殊材料在外场刺激下能够产生可逆的变色效应,并伴随着光学性能的变化。无机材料在外场的刺激下热稳定性好、化学性质稳定、抗疲劳性强,结合稀土离子丰富的发光能级,在无机材料中掺杂稀土离子能够获得优异的荧光性能,有利于实现基于变色效应的可逆荧光调控[
一些物质基于外场的刺激能够表现出光学性质的变化,其中最常见的是由电场、热场及光场刺激产生的电致变色、热致变色和光致变色效应[
电致变色效应:材料的光学性能包括反射率、透过率、吸收率等,在外加电场的作用下发生变化,在外观上表现为颜色及透明度的变化[
热致变色效应:材料的光学性质随温度变化而发生的变色现象,可发生在一个温度范围内或者特定的转变温度下,当材料加热到某一温度范围或特定温度时发生变色,回到初始温度后颜色恢复,该现象即为可逆热致变色[
光致变色效应:材料在特定波长光的刺激下表现出光学性能的变化,从而发生颜色的改变,并可以通过另一波长光刺激或热刺激恢复原始状态,两种不同状态之间的可逆转变即为可逆光致变色[
由于材料和外场刺激的种类不同,无机材料的变色机理多且复杂,目前接受度高的变色机理模型主要有:(1)色心模型:由Deb提出,认为色心的形成可产生对可见光的吸收,从而发生颜色变化[
基于外场刺激下的变色效应,通过无机材料基质的吸收带与稀土离子发光中心的发射带重叠,能够使基质的吸收抑制发光或者产生从发光中心向色心的能量传递,发生吸收和发光特性的变化,从而使荧光强度猝灭,获得基于变色效应的荧光强度的调控。其中,由变色效应引起的荧光强度的猝灭程度,即调控率,可用ΔRm表示,采用如下公式计算:
(1)
以Ren等[
图1 (a)BaMgSiO4∶Yb3+,Tb3+陶瓷在980 nm激发下的上转换发光光谱随着254 nm紫外光辐照时间的变化;(b)色心和发光中心的形成;(c)上转换发光调控机理;BaMgSiO4∶Yb3+,Tb3+陶瓷在254 nm光照前(d)和光照16 min后(e)的荧光寿命[
Fig. 1 (a)Upconversion luminescence spectra of BaMgSiO4∶Yb3+,Tb3+ ceramic upon the 980 nm excitation as a function of 254 nm UV light irradiation time. (b)The formation of color centers and luminescent centers. (c)Upconversion luminescence modulation mechanism. The fluorescence lifetime of BaMgSiO4∶Yb3+,Tb3+ ceramic without 254 nm light irradiation(d) and irradiated by 254 nm light for 16 min(e)[
早期工作中,电致变色效应多用于改变材料的光学吸收特性,从而广泛应用于节能智能窗、显示器等领域[
例如,Shen等[
图2 (a)WO3在负偏置电压刺激下的上转换发射光谱;(b)荧光强度调控率(ΔRm)与施加负偏置电压的关系;(c)变色WO3在不同正偏置电压刺激下漂白的上转换发射光谱;(d)上转换发光的恢复程度与施加的正偏置电压的关系;(e)WO3在负、正偏置电压交替循环刺激下的上转换发射强度;(f)负偏置电压刺激下,利用商业光刻胶在原始WO3表面制作的点阵;(h)在正偏置电压刺激下,利用商业光刻胶在着色WO3表面制作的点阵;(g)、(i)点阵在980 nm激发下相应的上转换发光照片[
Fig. 2 (a)The upconversion emission spectra of WO3 upon the various negative bias voltage stimulation. (b)The fluorescence intensity modulation degree (ΔRm) as a function of applied negative bias voltage. (c)The upconversion emission spectra of colored-WO3 bleached at the various positive bias voltage stimulation. (d)The recovery degree of upconversion luminescence as a function of applied positive bias voltage. (e)The upconversion luminescence intensity of WO3 by alternating stimulation between negative and positive bias voltage stimulation as a function of the cycle numbers. (f)The designed arrays masked by transparent commercial photoresist at the surface of the raw WO3 upon the stimulation of negative bias voltage stimulation. (h)The designed arrays masked by transparent commercial photoresist at the surface of the black colored-WO3 upon the stimulation of positive bias voltage stimulation. (g), (i)The upconversion luminescence photos of designed arrays excited at the 980 nm[
近年来的研究表明,通过稀土离子的掺杂,具有可逆热致变色效应的无机稀土发光材料在热场刺激下可以获得荧光可逆调控,扩展了除传统热致变色智能窗以外的光开关、防伪识别等应用。
2018—2019年,昆明理工大学Yang 课题组Li和Ruan 等针对无机热致变色材料MoO3和WO3,利用稀土离子发光中心掺杂,分别报道了基于热致变色效应的荧光强度可逆调控及应用。Li等[
图3 (a)基于热致变色效应的MoO3∶Yb3+,Er3+上转换发光调控机理;MoO3∶Yb3+,Er3+在空气(b)或还原气氛(c)中循环5次后的吸收光谱和颜色变化,分别表示为M-500-An(n=1~5)和M-500-Hn(n=1~5);(d)M-500-An(n=1~5)和M-500-Hn(n=1~5)的上转换发光强度与烧结周期数的函数关系[
Fig. 3 (a)Mechanism of upconversion luminescence modulation of MoO3∶Yb3+,Er3+ based on the thermochromic reaction. Absorbance spectra and color change of MoO3∶Yb3+,Er3+ in air(b) or reducing atmosphere(c) after 5 cycles were denoted as M-500-An(n=1-5) and M-500-Hn(n=1-5), respectively. (d)Upconversion luminescence intensity of M-500-An(n=1-5) and M-500-Hn(n=1-5) as a function of sintering cycle numbers[
由Ruan等[
图4 (a)W-400-An和W-600-An的照片和开关示意图;W-400-An(b)和W-600-An(c)的上转换发光强度多次循环调控[
Fig. 4 (a)Photographs and the switch diagram of W-400-An and W-600-An. Upconversion luminescence intensity of W-400-An(b) and W-600-An(c) as a function of the cycle sintering times[
此外,由于光的吸收产生热,激光的辐照也可以诱导热致变色效应的产生[
图5 (a)980 nm照射和热刺激交替作用下W700指纹图案的可逆书写和擦除;(b)基于W700-F的上转换发光调控的指纹采集;(c)W700指纹图谱的变化与保存时间的关系[
Fig. 5 (a)Reversible writing and erasing of fingerprint pattern of W700 by alternating 980 nm irradiation and thermal stimulus. (b)The fingerprint acquisition based on the upconversion luminescence modification of W700-F as a function of cycle number. (c)The change of fingerprint patterns for W700 as a function of the preservation time[
由于光场刺激具有易操作、安全性和实时性的优势,吸引了研究人员的广泛关注。在发光材料中,基于光致变色效应能够实现实时、高效、稳定、可逆可重复的荧光强度调控,可应用于光开关、光学信息存储、光学防伪识别等新型领域。20世纪90年代末,Fernández-Acebes和Lehn报道了有机材料中基于光致变色效应的荧光调控研究,自此之后出现了大量研究报道,然而多数集中在有机材料中[
直到2015年,内蒙古科技大学Zhang课题组[
此外,在光致变色调控荧光强度的研究中,近年来一些报道突破了单一的调控模式和范围,多重模式的荧光强度调控能够拓宽光学性能的“开”、“关”途径,从而丰富其在光学防伪识别和光存储等领域的应用。例如,Sun等[
利用可逆的光致变色和漂白效应对荧光强度进行调控,其中变色和漂白过程分别对应荧光强度的猝灭和恢复,能够使荧光的“开”、“关”性能在新型防伪识别、光存储等领域显示出广阔的应用前景。
3.3.1 防伪应用
现如今,假冒产品在各行各业越来越普遍,给个人、企业和国家带来了重大的损失和严重的安全威胁,防伪安全已经为重要的问题。防伪技术已广泛应用于身份证、货币、商品智能包装、标签和重要文件等。而传统的防伪技术容易受到侵犯,因此需要开发难以复制、识别度高和成本低的先进防伪技术。在稀土离子发光材料中,基于光致变色效应调控荧光强度的防伪应用可以满足以上需求,其中光学信息的识别和读出是关键。
例如,Zhang等[
此外,由于块状材料限制了防伪领域的实际应用,因此开发具有光致变色效应的荧光粉及柔性材料成为了发展趋势。例如,Tang等[
图6 (a)原始和光致变色的柔性CaWO4∶Yb3+,Er3+,Bi3+图案在日光下的照片;分别在980 nm(b)、254 nm(c)和双光(d)激发下的上转换和下转移发光照片[
Fig. 6 (a)The photos of original and photochromic flexible CaWO4∶Yb3+,Er3+,Bi3+ patterns in day light. The upconversion luminescence and downshift luminescence photos under 980 nm(b), 254 nm(c) and dual-light(d) excitation, respectively[
3.3.2 光存储应用
随着现代互联网和智能设备的飞速发展,数据存储容量的需求越来越大,因此,对数据存储介质提出了更高的要求。光存储技术与传统的固态存储和磁存储技术相比,具有成本和能耗低、存储寿命长、非接触式读写、可重写等优点[
年份 | 基质 | 掺杂离子 | 写入/nm | 擦除 | 光调控率/% | 参考文献 |
---|---|---|---|---|---|---|
2016 | Na0.5Bi4.5Ti4O15 | Sm3+, Pr3+, Er3+ | 407 | 200 ℃ | 70.14 |
[ |
2017 | Na0.5Bi2.5Nb2O9 | Ho3+ | 407 | 200 ℃ | 94 |
[ |
2017 | Na0.5Bi2.5Nb2O9 | Yb3+, Er3+ | 407 | 200 ℃ | 86 |
[ |
2018 | (K,Na)NbO3 | Yb3+, Ho3+ | 407 | 230 ℃ | 78 |
[ |
2020 | PbWO4 | Yb3+, Er3+ | 532 | 808 nm | 80 |
[ |
2020 | Na0.5Bi2.5Nb2O9 | Er3+ | 405 | 250 ℃ | 75 |
[ |
2020 | Bi4Ti3O12 | Pr3+ | 405 | 250 ℃ | 76 |
[ |
2021 | BaMgSiO4 | Eu2+ | 405 | 532 nm | 54.47 |
[ |
2021 | BaMgSiO4 | Ce3+, Mn3+, Nd3+ | 310 | 590 nm | 96.3 |
[ |
2021 | Ca2SnO4 | Eu3+ | 280 | 585 nm | 40.5 |
[ |
2021 | Sr2SnO4 | Sm3+ | 290 | 300 ℃ | 72.2 |
[ |
2021 | Tungsten phosphate glass | Eu3+, Dy3+ | 473 | 300 ℃ | 68 |
[ |
2021 | RNbO4 | Yb3+, Er3+, Tm3+, Ho3+ | 365 | 405 nm | 99.2 |
[ |
为了获得新型高性能光存储器件从而扩展更多应用,研究表明可以通过以下策略来实现:
(1)选择合适的激发波长
激发波长和吸收带之间的重叠会导致二次吸收[
上转换发光过程由于两个或多个能量较低的光子通过多次能量传递产生一个能量较高的光子,可成为一种理想的数据无损读取方法。例如,Zhang等[
图7 (a)532 nm或808 nm激光在不同时间和功率密度下书写在PbWO4∶Yb3+,Er3+陶瓷上的“KUST”字母和相应的上转换发光照片;(b)532 nm和808 nm交替照射下的信息可逆书写和擦除;(c)PbWO4∶Yb3+,Er3+陶瓷的光致变色点阵、相应的上转换发光点阵和上转换发光光谱[
Fig. 7 (a)The “KUST” letters and corresponding UCL photos on the PbWO4∶Yb3+,Er3+ ceramic written by 532 nm or 808 nm laser in various time and power densities. (b)Reversible writing and erasing of information by alternating 532 nm irradiation and 808 nm irradiation. (c)Photochromic arrays, the corresponding UCL arrays and UC spectra of PbWO4∶Yb3+, Er3+ ceramic[
此外,选择短波深紫外光源(<250 nm)作为激发波长,也能够实现光学信息的无损读出。例如Yang等[
(2)构建发光中心与色心之间的有效能量传递
Zhu等[
(3)制备新型基质材料
在光存储应用研究中,柔性光存储介质有利于实现新型可穿戴电子产品。例如,Chen等[
图8 将标识图案(a)、二维码图案(b)、二进制格式信息(c)写入透明玻璃内;(d)在透明玻璃各层上书写的3D光学信息[
Fig. 8 The logo patterns(a), two-dimensional code pattern(b) and binary format information(c) written into the transparent glass. (d)The 3D optical information written in various layers of the transparent glass[
利用外场刺激下的变色效应,在无机稀土发光材料中实现可逆荧光调控,具有良好的可逆性和实时性。本文针对无机稀土发光材料,分别介绍了在电场、热场及光场刺激下,基于电致变色、热致变色和光致变色效应的可逆荧光调控及其应用研究进展。
在电场刺激下的电致变色效应,其变色和漂白状态具有稳定性,并且响应速度快,可用于制备能耗低、稳定性好的电致变色器件。然而,现阶段多数报道仍然集中在利用电致变色效应改变材料的光学吸收特性,目前迫切需要在无机稀土发光材料中实现基于电致变色效应的可逆荧光调控,从而拓展其在发光智能窗、发光二极管等新型领域的应用。
在热场刺激下的热致变色效应,由于外加热场的变化具有连续性,在基于热致变色效应的可逆荧光调控研究中,难以实现调控的稳定性和精确性,在实际应用中仍具有局限性,还需要进一步的研究发展。
光场刺激由于更具有易操作性、实时性、安全性等优势,成为了现阶段的主要研究目标,特别是在光开关、防伪识别、光存储等新型领域开展了大量研究。然而目前基于光致变色效应的可逆荧光调控研究还存在一些问题,例如调控率、响应速度仍需要进一步提高,从而提高光学信号的识别度、实时性、精确性等。此外还需开发可用于多种复杂环境的新型基质材料,例如柔性薄膜、透明玻璃等,从而进一步扩展无机稀土发光材料的应用领域。
综上所述,在今后的研究中,基于变色效应的荧光可逆调控研究及应用可从以上几个方面出发,从而获得进一步的发展,实现更多的实际应用。
本文专家审稿意见及作者回复内容的下载地址:http://cjl.lightpublishing.cn/thesisDetails#10.37188/CJL.20210326.
JOOS J J, VAN DER HEGGEN D, MARTIN L I D J, et al. Broadband infrared LEDs based on europium-to-terbium charge transfer luminescence [J]. Nat. Commun., 2020, 11(1):3647-1-11. [百度学术]
NYK M, KUMAR R, OHULCHANSKYY T Y, et al. High contrast in vitro and in vivo photoluminescence bioimaging using near infrared to near infrared up-conversion in Tm3+ and Yb3+ doped fluoride nanophosphors [J]. Nano Lett., 2008, 8(11):3834-3838. [百度学术]
CHEN X, JIN L M, KONG W, et al. Confining energy migration in upconversion nanoparticles towards deep ultraviolet lasing [J]. Nat. Commun., 2016, 7:10304-1-6. [百度学术]
YUAN M H, FAN H H, LI H, et al. Controlling the two-photon-induced photon cascade emission in a Gd3+/Tb3+-codoped glass for multicolor display [J]. Sci. Rep., 2016, 6(1):21091-1-8. [百度学术]
HAN Y D, LI H Y, WANG Y B, et al. Upconversion modulation through pulsed laser excitation for anti-counterfeiting [J]. Sci. Rep., 2017, 7(1):1320-1-8. [百度学术]
CAO C, LI G S, XIE Y, et al. Er3+ doped core-shell nanoparticles with large enhanced near-infrared luminescence for in vivo imaging [J]. Inorg. Chem. Commun., 2021, 126:108468. [百度学术]
SONG P J, QIAO B, SONG D D, et al. Modifying the crystal field of CsPbCl3∶Mn2+ nanocrystals by co-doping to enhance its red emission by a hundredfold [J]. ACS Appl. Mater. Interfaces, 2020, 12(27):30711-30719. [百度学术]
SUO H, GUO C F, LI T. Broad-scope thermometry based on dual-color modulation up-conversion phosphor Ba5Gd8Zn4O21∶Er3+/Yb3+ [J]. J. Phys. Chem. C, 2016, 120(5):2914-2924. [百度学术]
KAMAL C S, RAO T K V, SAMUEL T, et al. Blue to magenta tunable luminescence from LaGaO3∶Bi3+,Cr3+ doped phosphors for field emission display applications [J]. RSC Adv., 2017, 7(71):44915-44922. [百度学术]
SHAO B, YANG Z W, WANG Y D, et al. Coupling of Ag nanoparticle with inverse opal photonic crystals as a novel strategy for upconversion emission enhancement of NaYF4∶Yb3+,Er3+ nanoparticles [J]. ACS Appl. Mater. Interfaces, 2015, 7(45):25211-25218. [百度学术]
YANG Z W, ZHU K, SONG Z G, et al. Photonic band gap and upconversion emission properties of Yb,Er co-doped lead lanthanum titanate inverse opal photonic crystals [J]. Appl. Phys. A, 2011, 103(4):995-999. [百度学术]
HUANG F, YANG T, WANG S X, et al. Temperature sensitive cross relaxation between Er3+ ions in laminated hosts:a novel mechanism for thermochromic upconversion and high performance thermometry [J]. J. Mater. Chem. C, 2018, 6(45):12364-12370. [百度学术]
LIN J F, LU Q L, WU X, et al. In situ boost and reversible modulation of dual-mode photoluminescence under an electric field in a tape-casting-based Er-doped K0.5Na0.5NbO3 laminar ceramic [J]. J. Mater. Chem. C, 2019, 7(26):7885-7892. [百度学术]
QIU J R, MIURA K, SUZUKI T, et al. Permanent photoreduction of Sm3+ to Sm2+ inside a sodium aluminoborate glass by an infrared femtosecond pulsed laser [J]. Appl. Phys. Lett., 1999, 74(1):10-12. [百度学术]
洪广言. 稀土发光材料的研究进展 [J]. 人工晶体学报, 2015, 44(10):2641-2651. [百度学术]
HONG G Y. Research progress of rare earth luminescent materials [J]. J. Synthetic Cryst., 2015, 44(10):2641-2651. (in Chinese) [百度学术]
张中太, 张俊英. 无机光致发光材料及应用 [M]. 第2版. 化学工业出版社, 2011. [百度学术]
ZHANG Z T, ZHANG J Y. Inorganic Photoluminescent Materials and Applications [M]. 2nd ed. Beijing: Chemical Industry Press, 2011. (in Chinese) [百度学术]
BI J Q, WEI T, SHEN L H, et al. Tunable upconversion luminescence in new Ho3+/Yb3+-doped SrBi4Ti4O15 photochromic ceramics for switching application [J]. J. Am. Ceram. Soc., 2021, 104(4):1785-1796. [百度学术]
LV Y, JIN Y H, LI Z Z, et al. Reversible photoluminescence switching in photochromic material Sr6Ca4(PO4)6F2∶Eu2+ and the modified performance by trap engineering via Ln3+ (Ln=La,Y,Gd,Lu) co-doping for erasable optical data storage [J]. J. Mater. Chem. C, 2020, 8(19):6403-6412. [百度学术]
ZHANG R T, JIN Y H, YUAN L F, et al. Photochromism of Sm3+-doped perovskite oxide:ultrahigh-contrast optical switching and erasable optical recording [J]. J. Lumin., 2021, 233:117922. [百度学术]
WARWICK M E A, BINIONS R. Advances in thermochromic vanadium dioxide films [J]. J. Mater. Chem. A, 2014, 2(10):3275-3292. [百度学术]
SABEA H A, NOREL L, GALANGAU O, et al. Efficient photomodulation of visible Eu(Ⅲ) and invisible Yb(Ⅲ) luminescences using DTE photochromic ligands for optical encryption [J]. Adv. Funct. Mater., 2020, 30(30):2002943-1-8. [百度学术]
SU X J, LI H Q, LAI X J, et al. Bioinspired superhydrophobic thermochromic films with robust healability [J]. ACS Appl. Mater. Interfaces, 2020, 12(12):14578-14587. [百度学术]
YANG Z T, DU J R, MARTIN L I D J, et al. Reversible yellow-gray photochromism in potassium-sodium niobate-based transparent ceramics [J]. J. Eur. Ceram. Soc., 2021, 41(3):1925-1933. [百度学术]
ROSSEINSKY D R, MORTIMER R J. Electrochromic systems and the prospects for devices [J]. Adv. Mater., 2001, 13(11):783-793. [百度学术]
NIKLASSON G A, GRANQVIST C G. Electrochromics for smart windows:thin films of tungsten oxide and nickel oxide,and devices based on these [J]. J. Mater. Chem., 2007, 17(2):127-156. [百度学术]
DEB S K. A novel electrophotographic system [J]. Appl. Opt., 1969, 8(S1):192-195. [百度学术]
YAO D D, RANI R A, O’MULLANE A P, et al. Enhanced coloration efficiency for electrochromic devices based on anodized Nb2O5/electrodeposited MoO3 binary systems [J]. J. Phys. Chem. C, 2014, 118(20):10867-10873. [百度学术]
VU T D, CHEN Z, ZENG X T, et al. Physical vapour deposition of vanadium dioxide for thermochromic smart window applications [J]. J. Mater. Chem. C, 2019, 7(8):2121-2145. [百度学术]
ZHOU J D, GAO Y F, ZHANG Z T, et al. VO2 thermochromic smart window for energy savings and generation [J]. Sci. Rep., 2013, 3:3029-1-5. [百度学术]
WANG S F, FAN W R, LIU Z C, et al. Advances on tungsten oxide based photochromic materials:strategies to improve their photochromic properties [J]. J. Mater. Chem. C, 2018, 6(2):191-212. [百度学术]
TAKATOHI U E, BITTENCOURT D R S, WATANABE S. Small-angle X-ray scattering study on growth of AgCl crystallites in photochromic glasses [J]. J. Appl. Cryst., 1997, 30(5):628-632. [百度学术]
HE T, YAO J N. Photochromism in composite and hybrid materials based on transition-metal oxides and polyoxometalates [J]. Prog. Mater. Sci., 2006, 51(6):810-879. [百度学术]
REN Y T, YANG Z W, WANG Y H, et al. Reversible multiplexing for optical information recording,erasing,and reading-out in photochromic BaMgSiO4∶Bi3+ luminescence ceramics [J]. Sci. China Mater., 2020, 63(4):582-592. [百度学术]
ZHANG Y Y, LUO L H, LI K X, et al. Reversible up-conversion luminescence modulation based on UV-VIS light-controlled photochromism in Er3+ doped Sr2SnO4 [J]. J. Mater. Chem. C, 2018, 6(48):13148-13156. [百度学术]
ZHANG Q W, ZHANG Y, SUN H Q, et al. Photoluminescence,photochromism,and reversible luminescence modulation behavior of Sm-doped Na0.5Bi2.5Nb2O9 ferroelectrics [J]. J. Eur. Ceram. Soc., 2017, 37(3):955-966. [百度学术]
ZHANG Y, LIU J, SUN H Q, et al. Reversible luminescence modulation of Ho-doped K0.5Na0.5NbO3 piezoelectrics with high luminescence contrast [J]. J. Am. Ceram. Soc., 2018, 101(6):2305-2312. [百度学术]
WANG J Q, BELL J M, SKRYABIN I L. The kinetic behaviour of ion transport in WO3 based films produced by sputter and sol-gel deposition:Part I. The simulation model [J]. Sol. Energy Mater. Solar Cells, 1999, 59(3):167-183. [百度学术]
REN Y T, YANG Z W, LI M J, et al. Reversible upconversion luminescence modification based on photochromism in BaMgSiO4∶Yb3+,Tb3+ ceramics for anti-counterfeiting applications [J]. Adv. Opt. Mater., 2019, 7(15):1900213-1-12. [百度学术]
BREZESINSKI T, ROHLFING D F, SALLARD S, et al. Highly crystalline WO3 thin films with ordered 3D mesoporosity and improved electrochromic performance [J]. Small, 2006, 2(10):1203-1211. [百度学术]
GRANQVIST C G. Electrochromism and smart window design [J]. Solid State Ionics, 1992, 53-56:479-489. [百度学术]
BANGE K, GAMBKE T. Electrochromic materials for optical switching devices [J]. Adv. Mater., 1990, 2(1):10-16. [百度学术]
SHEN L Y, ZHENG J M, XU C Y. Enhanced electrochromic switches and tunable green fluorescence based on terbium ion doped WO3 films [J]. Nanoscale, 2019, 11(47):23049-23057. [百度学术]
ZHAN Y H, YANG Z W, XU Z, et al. Electrochromism induced reversible upconversion luminescence modulation of WO3∶Yb3+,Er3+ inverse opals for optical storage application [J]. Chem. Eng. J., 2020, 394:124967-1-9. [百度学术]
LI M J, YANG Z W, REN Y T, et al. Reversible modulated upconversion luminescence of MoO3∶Yb3+,Er3+ thermochromic phosphor for switching devices [J]. Inorg. Chem., 2019, 58(10):6950-6958. [百度学术]
RUAN J F, YANG Z W, HUANG A J, et al. Thermomchromic reaction-induced reversible upconversion emission modulation for switching devices and tunable upconversion emission based on defect engineering of WO3∶Yb3+,Er3+ phosphor [J]. ACS Appl. Mater. Interfaces, 2018, 10(17):14941-14947. [百度学术]
NISHIO S, KAKIHANA M, EBA H, et al. “Doughnut-shaped” coloration of V2O5 upon laser irradiation:another evidence of visible light photochromism of V2O5 [J]. Jpn. J. Appl. Phys., 2003, 42(9R):5670-5671. [百度学术]
NISHIO S, KAKIHANA M. Evidence for visible light photochromism of V2O5 [J]. Chem. Mater., 2002, 14(9):3730-3733. [百度学术]
RUAN J F, YANG Z W, WEN Y G, et al. Laser induced thermochromism and reversible upconversion emission modulation of a novel WO3∶Yb3+,Er3+ ceramic:dual-modal fingerprint acquisition application [J]. Chem. Eng. J., 2020, 383:123180-1-8. [百度学术]
FERNÁNDEZ-ACEBES A, LEHN J M. Optical switching and fluorescence modulation in photochromic metal complexes [J]. Adv. Mater., 1998, 10(18):1519-1522. [百度学术]
FERNÁNDEZ-ACEBES A, LEHN J M. Optical switching and fluorescence modulation properties of photochromic metal complexes derived from dithienylethene ligands [J]. Chem. Eur. J., 1999, 5(11):3285-3292. [百度学术]
AKIYAMA M. Blue-green light photochromism in europium doped BaMgSiO4 [J]. Appl. Phys. Lett., 2010, 97(18):181905-1-3. [百度学术]
KAMIMURA S, YAMADA H, XU C N. Purple photochromism in Sr2SnO4∶Eu3+ with layered perovskite-related structure [J]. Appl. Phys. Lett., 2013, 102(3):031110-1-4. [百度学术]
ZHANG Q W, SUN H Q, LI H, et al. Reversible photoresponsive switching in Bi2.5Na0.5Nb2O9-based luminescent ferroelectrics [J]. Chem. Commun., 2015, 51(91):16316-16319. [百度学术]
SUN H Q, LI X F, ZHU Y, et al. Achieving multicolor emission readout and tunable photoswitching via multiplexing of dual lanthanides in ferroelectric oxides [J]. J. Mater. Chem. C, 2019, 7(19):5782-5791. [百度学术]
ZHANG Q W, ZHENG X W, SUN H Q, et al. Dual-mode luminescence modulation upon visible-light-driven photochromism with high contrast for inorganic luminescence ferroelectrics [J]. ACS Appl. Mater. Interfaces, 2016, 8(7):4789-4794. [百度学术]
WANG H J, LIN J F, DENG B Y, et al. Reversible multi-mode modulations of optical behavior in photochromic-translucent Nd-doped K0.5Na0.5NbO3 ceramic [J]. J. Mater. Chem. C, 2020, 8(7):2343-2352. [百度学术]
ZHANG Q, TANG J, DU P, et al. Reversible and color controllable emissions in Er3+/Pr3+-codoped K0.5Na0.5NbO3 ceramics with splendid photochromic properties for anti-counterfeiting applications [J]. J. Eur. Ceram. Soc., 2021, 41(3):1904-1916. [百度学术]
CAO S Y, ZHU J T, CHEN Q, et al. Exploration about superior anti-counterfeiting ability of Sm3+ doped KSr2Nb5O15 photochromic ceramics:origin and atomic-scale mechanism [J]. J. Materiomics, 2022, 8(1):38-46. [百度学术]
CAO S Y, CHEN Q, LI Y P, et al. Novel strategy for the enhancement of anti-counterfeiting ability of photochromic ceramics:Sm3+ doped KSr2Nb5O15 textured ceramics with anisotropic luminescence modulation behavior [J]. J. Eur. Ceram. Soc., 2021, 41(9):4924-4933. [百度学术]
WEI T, JIA B, SHEN L H, et al. Reversible upconversion modulation in new photochromic SrBi2Nb2O9 based ceramics for optical storage and anti-counterfeiting applications [J]. J. Eur. Ceram. Soc., 2020, 40(12):4153-4163. [百度学术]
TANG J, MU Y X, DU P, et al. Luminescence modulation of the Eu3+ doped Srn+1Snn (n=1,2,5,∞) ceramics based on photochromism and its application in anti-counterfeiting technology [J]. Ceram. Inter., 2020, 46(8):11962-11969. [百度学术]
BAI X, CUN Y K, XU Z, et al. Multiple Anti-Counterfeiting and optical storage of reversible dual-mode luminescence modification in photochromic CaWO4∶Yb3+,Er3+,Bi3+ phosphor [J]. Chem. Eng. J., 2022, 429:132333-1-9. [百度学术]
PARTHENOPOULOS D A, RENTZEPIS P M. Three-dimensional optical storage memory [J]. Science, 1989, 245(4920):843-845. [百度学术]
ZHANG J Y, GECEVIČUS M, BERESNA M, et al. Seemingly unlimited lifetime data storage in nanostructured glass [J]. Phys. Rev. Lett., 2014, 112(3):033901-1-5. [百度学术]
ZHANG Q W, ZHANG Y, SUN H Q, et al. Tunable luminescence contrast of Na0.5Bi4.5Ti4O15∶Re(Re=Sm,Pr,Er) photochromics by controlling the excitation energy of luminescent centers [J]. ACS Appl. Mater. Interfaces, 2016, 8(50):34581-34589. [百度学术]
ZHANG Q Q, LIU J, SUN H Q, et al. Luminescence photoswitching of Ho-doped Na0.5Bi2.5Nb2O9 ferroelectrics:the luminescence readout process [J]. J. Mater. Chem. C, 2017, 5(4):807-816. [百度学术]
ZHANG Q W, YUE S S, SUN H Q, et al. Nondestructive up-conversion readout in Er/Yb co-doped Na0.5Bi2.5Nb2O9-based optical storage materials for optical data storage device applications [J]. J. Mater. Chem. C, 2017, 5(15):3838-3847. [百度学术]
SUN H Q, ZHANG Y, LIU J, et al. Reversible upconversion switching for Ho/Yb codoped (K,Na)NbO3 ceramics with excellent luminescence readout capability [J]. J. Am. Ceram. Soc., 2018, 101(12):5659-5674. [百度学术]
BAI X, YANG Z W, ZHAN Y H, et al. Novel strategy for designing photochromic ceramic:reversible upconversion luminescence modification and optical information storage application in the PbWO4∶Yb3+,Er3+ photochromic ceramic [J]. ACS Appl. Mater. Interfaces, 2020, 12(19):21936-21943. [百度学术]
CHEN H S, DONG Z G, CHEN W W, et al. Flexible and rewritable non-volatile photomemory based on inorganic lanthanide-doped photochromic thin films [J]. Adv. Opt. Mater., 2020, 8(16):1902125-1-7. [百度学术]
WEI T, YANG F M, JIA B, et al. Reversible photoluminescence modulation in praseodymium-doped bismuth titanate ceramics for information storage based on photochromic reaction [J]. Ceram. Int., 2020, 46(11):18507-18517. [百度学术]
ZHU Y, SUN H Q, JIA Q N, et al. Site-selective occupancy of Eu2+ toward high luminescence switching contrast in BaMgSiO4-based photochromic materials [J]. Adv. Opt. Mater., 2021, 9(6):2001626-1-10. [百度学术]
YANG Z T, DU J R, MARTIN L I D J, et al. Designing photochromic materials with large luminescence modulation and strong photochromic efficiency for dual-mode rewritable optical storage [J]. Adv. Opt. Mater., 2021, 9(20):2100669. [百度学术]
YANG Z T, HU J Q, MARTIN L I D J, et al. Realizing nondestructive luminescence readout in photochromic ceramics via deep ultraviolet excitation for optical information storage [J]. J. Mater. Chem. C, 2021, 9(39):14012-14020. [百度学术]
TANG J, DU P, LI W P, et al. The integration of diverse fluorescence performances of Sr2-xSnO4∶xSm3+ ceramics with an infinite luminescence modulation ratio [J]. Chem. Eng. J., 2021, 410:128287. [百度学术]
HU Z, HUANG X J, YANG Z W, et al. Reversible 3D optical data storage and information encryption in photo-modulated transparent glass medium [J]. Light:Sci. Appl., 2021, 10:140-1-9. [百度学术]
ZHANG Z, GUO L J, SUN H Q, et al. Rare earth orthoniobate photochromics with self-activated upconversion emissions for high-performance optical storage applications [J]. J. Mater. Chem. C, 2021, 9(39):13841-13850. [百度学术]
3412
浏览量
1109
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构