浏览全部资源
扫码关注微信
1. 中国科学院 微电子研究所, 北京 100029
2. 贵州大学理学院,贵州大学新型光电子材料与技术研究所, 贵州 贵阳 550025
收稿日期:2011-03-24,
修回日期:2011-05-05,
网络出版日期:2011-09-22,
纸质出版日期:2011-09-22
移动端阅览
崔冬萌, 贾锐, 谢泉, 赵珂杰. Ru<sub>2</sub> Si<sub>3</sub> 在应力作用下的第一性原理研究[J]. 发光学报, 2011,32(9): 907-912
CUI Dong-meng, JIA Rui, XIE Quan, ZHAO Ke-jie. First-principles Calculations of Stressed Ru<sub>2</sub>Si<sub>3</sub>[J]. Chinese Journal of Luminescence, 2011,32(9): 907-912
采用基于第一性原理的密度泛函理论(Density functional theory)赝势平面波方法
对应力下Ru
2
Si
3
的电子结构和光学性质进行了理论计算和比较。计算结果表明:随着正应力的逐渐增大
导带向高能方向移动
带隙
E
g
明显展宽;随着负应力的逐渐增大
带隙缓慢减小并且始终为直接带隙。光学性质曲线随着负应力的不断减小至正应力的不断增大都向高能方向漂移。
Electronic structure and optical properties of Stressed Ru
2
Si
3
have been calculated and compared using the first-principle density function theory pseudopotential method. The calculated results show that the energy band-gap increases with increasing the positive stress; the energy band-gap decreases with increasing the negative stress
and Ru
2
Si
3
always is direct band-gap semiconductor. The curves of optical properties tend to high-energy direction with increasing the stress.
Borisenko Victor E. Semiconducting Silicides [M]. New York: Springer-Verlag, 2001:1-5.[2] Liu Lei, Yang Qinyu, Wang Dexin, et al. Dielectric barrier discharge deposition of dorous silicon-based nanoparticle films: The optical emission spectrum and Fourier transform infrared spectrum [J]. Chin. J. Lumin. (发光学报), 2010, 31 (6):904-907 (in Chinese).[3] Li Bin, Zuo Qinghui. Preparation and oxygen-sensing properties of ruthenium(Ⅱ) complex as optical oxygen-sensing material [J]. Chin. J. Lumin. (发光学报), 2011, 32 (3):211-215 (in Chinese).[4] Krivosheeva A V, Shaposhnikov V L, Borisenko V E. Electronic structure of stressed CrSi2 [J]. Mater. Sci. Engin. B, 2003, 101 (1-3):309-312.[5] Lau S S, Nicolt M A. In VLSI Electronics: Microstructure Sciens [M]. Edited by Einspruch N G and Larrabee G B, New York: Academic New York, 1983:329.[6] Poutcharovsky D J. Parthe' E. Enthalpies of formation of Ru-Si and Ru-Sn compounds by direct reaction calorimetry [J]. Acta Crystallogr. B, 1974, 30 (11):2692-2696.[7] Segall M D, Philip Lindan J D, Probert M J, et al. First-principles simulation: ideas, illustrations and the CASTEP code [J]. J. Phys.: Condense Matter, 2002, 14 (11):2717-2744.[8] Broyden C G. The convergence of a class of double-rank minimization algorithms, Ⅱ. The new algorithm [J]. J. Institute for Mathematics and Applications, 1970, 6 (3):222-231.[9] Fletcher R. A new approach to variable metric algorithms [J]. Computer Journal, 1970, 13 (3):317-322.[10] Goldfarb D. A family of variable-metric methods derived by variational means [J]. Mathematics of Computation, 1970, 24 (109):23-26.[11] Shanno D F. Conditioning of quasi-Newton methods for function minimization [J]. Mathematics of Computation, 1970, 24 (111): 647-656.[12] Vanderbilt D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism [J]. Phys. Rev. B, 1990, 41 (11):7892-7895.[13] Monkhorst H J, Pack J D. Special points for Brillouin-zone integrations [J]. Phys. Rev. B, 1976, 13 (12):5188-5192.
0
浏览量
135
下载量
6
CSCD
关联资源
相关文章
相关作者
相关机构