浏览全部资源
扫码关注微信
1. 中国科学院 研究生院, 北京 100039
2. 中国科学院理化技术研究所 光化学转换与功能材料重点实验室 北京,100190
3. 西北有色金属研究院,陕西 西安,710016
收稿日期:2011-04-02,
修回日期:2011-05-30,
网络出版日期:2011-09-22,
纸质出版日期:2011-09-22
移动端阅览
高武, 刘家磊, 薄淑晖, 刘新厚, 甄珍. 可用于电光材料的新型非线性光学活性的玻璃分子[J]. 发光学报, 2011,32(9): 858-863
GAO Wu, LIU Jia-lei, BO Shu-hui, LIU Xin-hou, ZHEN Zhen. Novel NLO Chromophore Glasses as Electro-optical Materials[J]. Chinese Journal of Luminescence, 2011,32(9): 858-863
通过在枝化苯胺-吡咯啉发色团接入具有-作用的蒽官能团
设计并合成了一种可用于二阶非线性光学材料的新型树枝状玻璃分子发色团ETO和ETF。所得到的分子玻璃发色团具有良好的自成膜性能
其玻璃化温度测得分别为41 ℃(ETO)和39 ℃(ETF)
用SHG法测得薄膜的非线性电光系数(
d
33
)分别为38
32 pm/V。结果表明
发色团玻璃具备了有机电光材料所需要的性能
并且其性能有很大的改进空间。
Two kinds of novel molecular glasses based on self-assembly dendritic chromophores are designed and synthesized as second-order nonlinear optical (NLO) materials
which named ETO and ETF. The chromophore glasses ETO and ETF showed excellent film-forming ability by themselves. Their glass transition temperatures (
T
g
) were determined at 41 ℃ and 39 ℃
respectively. The in-situ second harmonic generation (SHG) measurement revealed the resonant second-order NLO coefficient (
d
33
) values of 38 and 32 pm/V for the poled films of ETO and ETF
respectively. The results indicate molecular glasses provide a new possible way different from the conventional polymer approach to prepare second-order NLO materials.
Dalton L R. Nonlinear optical polymeric materials:from chromophore design to commercial applieations [J]. Adv. Polym. Sci., 2002, 158 (1):1-86.[2] Burland D M, Miller R D. Second-order nonlinearity in poled-polymer systems [J]. Chem. Rev., 1994, 94 (1):31-75.[3] Kim T D, Luo J D, Cheng Y J. Binary chromophore systems in nonlinear optical dendrimers and polymers for large electrooptic activities [J]. J. Phys. Chem. C, 2008, 112 (21):8091-8098.[4] Marder S R, Cheng L T, Tiemann B G. Large first hyperpolarizabilities in push-pull polyenes by tuning of the bond length alternation and aromaticity [J]. Science, 1994, 263 (5149):511-514.[5] Moylan C R, Twieg R J, Lee V Y, et al. Nonlinear optical chromophores with large hyperpolarizabilities and enhanced thermal stabilities [J]. J. Am. Chem. Soc.,1993, 115 (26):12599-12600.[6] Kang H, Zhu P W, Yang Y, et al. Self-assembled electrooptic thin films with remarkably blue-shifted optical absorption based on an X-shaped chromophore [J]. J. Am. Chem. Soc., 2004, 126 (49):15974-15975.[7] Saadeh H, Wang L M, Yu L P. Supramolecular solid-state assemblies exhibiting electrooptic effects [J]. J. Am. Chem. Soc., 2000, 122 (3):546-547.[8] Dalton L R, Jen A K, Stierer W H. Organic electro-optic materials: some unique opportunities [J]. SPIE, 2004, 5351:1-15.[9] Dalton L R, Harper A W, Robinson B H. The role of London forces in defining noncentrosymmetric order of high dipole moment-high hyperpolar-izability chromophores in electrically poled polymeric thin films [J]. Proc. Natl. Acad. Sci., 1997, 94 (10):4842-4847.[10] Nielsen R D, Rommel H L, Robinson B H. Simulation of the loading parameter in organic nonlinear optical materials [J]. J. Phys. Chem. B, 2004, 108 (25):8659-8667.[11] Liu J L, Bo S H, Zhen Z. Enhanced poling efficiency in rigid-flexible dendritic nonlinear optical chromophores [J]. J. Incl. Phenom. Macrocycl. Chem., 2010, 68 (3):253-260.[12] Mortazavi M A, Knoesen A, Kowel S T. Second-harmonic generation and absorption studies of polymer-dye films oriented by corona-onset poling at elevated temperatures [J]. J. Opt. Soc. Am. B, 1989, 6 (4):733-741.
0
浏览量
165
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构