浏览全部资源
扫码关注微信
1. 中国科学院研究生院 北京,100049
2. 中国科学院 激发态物理重点实验室 长春光学精密机械与物理研究所,吉林 长春,130033
收稿日期:2011-03-29,
修回日期:2011-05-24,
网络出版日期:2011-09-22,
纸质出版日期:2011-09-22
移动端阅览
廖亚琴, 陈红, 刘星元. PrF<sub>3</sub>阳极缓冲层对OLED器件性能的影响[J]. 发光学报, 2011,32(9): 929-933
LIAO Ya-qin, CHEN-hong, LIU Xing-yuan. Effect of PrF<sub>3</sub> Anode Buffer Layer on The Performance of OLED[J]. Chinese Journal of Luminescence, 2011,32(9): 929-933
使用真空热蒸镀法制备的OLED器件
利用不同厚度的PrF
3
作阳极缓冲层
并和未加缓冲层的器件进行了对比。实验结果表明: 0.5 nm厚的PrF
3
阳极缓冲层可以有效增强OLED器件的空穴注入能力
增强电子和空穴的浓度平衡
优化器件的电致发光特性。 器件的最大电流效率为4.9 cd/A
最大亮度为33 600 cd/m
2
分别是未加入缓冲层的常规器件(3.7 cd/A
最大亮度为12 230 cd/m
2
)的1.3倍和2.75倍。
A high efficiency organic light emitting device (OLED) was fabricated by a facile way based on an ultra thin praseodymium fluoride (PrF
3
) as the anode buffer layer. The PrF
3
anode buffer layer device shows some dramatic properties such as higher hole injection
stable and high current efficiency
and much higher luminance compared with those of the traditional ITO anode device. The 0.5 nm PrF
3
anode buffer layer device gives the maximum current efficiency and luminance of 4.9 cd/A and 33 600 cd/m
2
respectively
comparing with the traditional ITO anode device of 3.7 cd/A and 12 320 cd/m
2
. The reason of the optimized device was also discussed.
Burroughes J H, Bradley D D C, Brown A R, et al. Light-emitting-diodes based on conjugated polymers [J]. Nature, 1990, 347 (6293):539-541.[2] Baldo M A, O'Brien D F, You Y, et al. Highly efficient phosphorescent emission from organic electroluminescent devices [J]. Nature, 1998, 395 (6698):151-154.[3] Zhao Ting, Ding Hongbo, Shi Guoyue, et al. Oragnic light-emiiting diodes using cascade energy transfer process [J]. Chin. J. Lumin. (发光学报), 2002, 30 (3):332-336 (in Chinese).[4] Li Hongyan, Zhang Yuxiang, Zhang Hongke, et al. Effect of a series of host material on optoelectronic performance of red phosphorescent OLED [J]. Chin. J. Lumin. (发光学报), 2009, 30 (5):585-589 (in Chinese).[5] Zhang Chunyu, Lu Jingbin, Qin Li, et al. Design and fabrication of organic ligth-emitting white-color microcavity device [J]. Chin. J. Lumin. (发光学报), 2009, 30 (5):596-600 (in Chinese).[6] Baldo M A, Holmes R J, Forrest S R. Prospects for electrically pumped organic lasers [J]. Phys. Rev. B, 2002, 66 (3):035321-1-16.[7] Liu X Y, Li H B, Song C Y, et al. Microcavity organic laser device under electrical pumping [J]. Opt. Lett., 2009, 34 (4):503-505.[8] Burrows P E, Shen Z, Bulovic V, et al. Relationship between electroluminescence and current transport in organic heterojunction light-emitting devices [J]. J. Appl. Phys., 1996, 79 (10):7991-8006.[9] Kido J, Matsumoto T. Bright organic electroluminescent devices having a metal-doped electron-injecting layer [J]. Appl. Phys. Lett., 1998, 73 (20):2866-2868.[10] Crone B K, Davids P S, Campbell I H, et al. Device model investigation of single layer organic light emitting diodes [J]. J. Appl. Phys., 1998, 84 (2):833-842.[11] Hung L S, Tang C W, Mason M G. Enhanced electron injection in organic electroluminescence devices using an Al/LiF electrode [J]. Appl. Phys. Lett., 1997, 70 (2):152-154.[12] De Jong M P, Van Ijzendoorn L J, de Voigt M J A. Stability of the interface between indium-tin-oxide and poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) in polymer light-emitting diodes [J]. Appl. Phys. Lett., 2000, 77 (14):2255-2257.[13] Makinen A J, Hill I G, Shashidhar R, et al. Hole injection barriers at polymer anode/small molecule interfaces [J]. Appl. Phys. Lett., 2001, 79 (5):557-559.[14] Ikeda H, Sakata J, Hayakawa M, et al. Low drive voltage OLEDs with a buffer layer having molybdenum oxide [J]. SID Symposium Digest of Technical Papers, 2006, 37 (1):923-926.[15] Tu Aiguo, Zhou Xiang. OLEDs with Au/MoO3 hole injuction layer [J]. Chin. J. Lumin. (发光学报), 2010, 31 (2):157-161 (in Chinese).[16] Hou LIntao, Liu Pengyi, Zhang Jinglei, et al. Improved hole-injection contract by employing an ultra-thin MoO3 carrier injection layer [J]. Chin. J. Lumin. (发光学报), 2010, 31 (3):326-330 (in English).[17] Chang C C, Hsieh M T, Chen J F, et al. Highly power efficient organic light-emitting diodes with a p-doping layer [J]. Appl. Phys. Lett., 2006, 89 (25):253504-1-3.[18] Leem D S, Park H D, Kang J W, et al. Low driving voltage and high stability organic light-emitting diodes with rhenium oxide-doped hole transporting layer [J]. Appl. Phys. Lett., 2007, 91 (1):011113-1-3.[19] Zhao J M, Zhang S T, Wang X J, et al. Dual role of LiF as a hole-injection buffer in organic light-emitting diodes [J]. Appl. Phys. Lett., 2004, 84 (15):2913-2915.[20] Tokito S, Taga Y. Organic electroluminescent devices fabricated using a diamine doped MgF2 thin-film as a hole-transporting layer [J]. Appl. Phys. Lett., 1995, 66 (6):673-675.[21] Choong V E, Shi S, Curless J, et al. Bipolar transport organic light emitting diodes with enhanced reliability by LiF doping [J]. Appl. Phys. Lett., 2000, 76 (8):958-960.
0
浏览量
123
下载量
4
CSCD
关联资源
相关文章
相关作者
相关机构