浏览全部资源
扫码关注微信
内蒙古大学 化学化工学院,内蒙古 呼和浩特,010021
收稿日期:2010-07-10,
修回日期:2010-09-27,
网络出版日期:2011-03-22,
纸质出版日期:2011-03-22
移动端阅览
林雪梅, 赵永亮, 周永生, 孙慧娟, 白健. 卤代苯甲酸-TPTZ铽配合物的合成、表征及荧光性能[J]. 发光学报, 2011,32(3): 220-226
LIN Xue-mei, ZHAO Yong-liang, ZHOU Yong-sheng, SUN Hui-juan, BAI Jian. Synthesis, Characterization and Fluorescence Properties of Complexes of Terbium with Halobenzoic Acid and 2,4,6-tris-(2-pyridyl)-s-triazine[J]. Chinese Journal of Luminescence, 2011,32(3): 220-226
林雪梅, 赵永亮, 周永生, 孙慧娟, 白健. 卤代苯甲酸-TPTZ铽配合物的合成、表征及荧光性能[J]. 发光学报, 2011,32(3): 220-226 DOI:
LIN Xue-mei, ZHAO Yong-liang, ZHOU Yong-sheng, SUN Hui-juan, BAI Jian. Synthesis, Characterization and Fluorescence Properties of Complexes of Terbium with Halobenzoic Acid and 2,4,6-tris-(2-pyridyl)-s-triazine[J]. Chinese Journal of Luminescence, 2011,32(3): 220-226 DOI:
分别以对溴苯甲酸和对碘苯甲酸为第一配体
2
4
6-三吡啶基三嗪(TPTZ)为第二配体
以铽为中心
La
3+
、Y
3+
、Gd
3+
为掺杂离子
合成了8种铽及其掺杂配合物
对其进行了C、H、N元素分析及稀土络合滴定、紫外光谱、红外光谱和荧光光谱测定。推测配合物的组成为:Tb(P-BrBA)
3
(TPTZ)2H
2
O和Tb(P-IBA)
3
-(TPTZ)2H
2
O;铽掺杂稀土配合物为:Tb
0.5
Ln
0.5
(P-BrBA)
3
(TPTZ)2H
2
O和Tb
0.5
Ln
0.5
(P-IBA)
3
(TPTZ)2H
2
O (P-BrBA=对溴苯甲酸
P-IBA=对碘苯甲酸
Ln
3+
=La
3+
Y
3+
Gd
3+
)。摩尔电导率测试结果表明所有配合物均为非电解质。红外光谱测试结果表明
卤代苯甲酸的羧基氧原子与稀土离子配位
2
4
6-三吡啶基三嗪以主配位点上的3个氮原子与稀土离子成键。在上述铽配合物中
对溴苯甲酸配合物的荧光强度高于对碘苯甲酸配合物;掺入荧光惰性稀土离子镧、钆及钇后
发光强度均有不同程度的改变
掺入镧可明显增强铽的发光强度
钆可敏化铽的发光
而钇的敏化作用则不明显。
Eight terbium complexes have been synthesized by using p-bromine-benzoic acid
p-iodin-benzoic acid as the first ligand and 2
4
6-tris-(2-pyridyl)-s-triazine (TPTZ) as the second ligand. The ligands and coordination compounds are studied by IR spectra
UV spectra
fluorescence excitation and emission spectra. The results showed that all the complexes are non-electrolytes. P-bromine-benzoic acid or p-iodin-benzoic acid is bounded with Tb(Ⅲ) through oxygen atoms and 2
4
6-tris-(2-pyridyl)-s-triazine is bounded to Tb(Ⅲ) through three nitrogen atoms. Fluorescence emission spectra indicated that the intensity of terbium complexes of p-bromine-benzoic acid is stronger than those of p-iodine-benzoic acid. The fluorescence intensity of terbium complexes are enhanced by introducing La
3+
and Gd
3+
ions
respectively. We also find that when
n
(Tb) ∶
n
(
Ln
)=1 ∶ 1(
Ln
=La
Gd
Y)
the fluorescence emission intensity of Tb
0.5
La
0.5
(P-BrBA)
3
(TPTZ)2H
2
O
Tb
0.5
Gd
0.5
(P-BrBA)
3
(TPTZ)2H
2
O and Tb
0.5
Y
0.5
(P-BrBA)
3
(TPTZ)2H
2
O gradually decrease. The fluorescence emission intensity sequence of Tb (Ⅲ) with p-iodin-benzoic acid and TPTZ complexes are similar with the Tb (Ⅲ) with p-bromine-benzoic acid and TPTZ complexes. The
5
D
4
energy of Tb
3+
ion is 20 430 cm
-1
and 21 277 cm
-1
for the triplet energy of TPTZ. The triplet energy of TPTZ is higher than the excitation energy of Tb
3+
ion
thus the absorbing energy of TPTZ can effectively transferred to Tb
3+
ion
and producing a characteristic emission spectrum. Some complexes of non-fluorescence rare earth can also absorb the triplet energies of the ligands
and then transfer them to Tb
3+
in this way the fluorescence intensity is enhanced.
Wang Z M, Van de Burgt L J, Choppin G R. Spectroscopic study of lanthanide(Ⅲ) complexes with carboxylic acids [J].Inorganica Chimica Acta, 1999, 293 (2):167-177.[2] Berger R M, Holcombe J R. An electrochemical and spectroelectrochemical investigation of bis(2,2'-bipyridine) (2,4,6- tris(2-pyridyl)triazine)ruthenium(Ⅱ): a potential building block for supramolecular systems [J]. Inorg. Chim. Acta, 1995, 232 (1-2):217-211.[3] Berger R M, Ellis D D. Unusual electrochemical and spectroscopic behavior in a ligand- bridged binuclear complex of ruthenium (Ⅱ): tetrakis (2,2'-bipyridine)-(-2,4,6-tris(2-pyridyl)triazine) diruthenium(Ⅱ) [J]. Inorg. Chim. Acta, 1996, 241 (1-2):1-4.[4] Byers P, Chan G Y S, Drew M G B, et al. Concomitant binding of a nickel(Ⅱ) cation and a nitrate anion by the ligand 2,4,6-tri-2-pyridyl-1,3,5-triazine (TPTZ): The crystal structure of Ni 3+3NO-3H2O [J]. Polyhedron, 1996, 15 (17):2845-2849.[5] Zhao Yongliang, Zhao Fengying. Influence of Gd and Y on luminescence of Eu in complexes of rare earth with dibenzolmethide and 2,2-dipyridyl [J]. Chin. J. Lumin. (发光学报), 2002, 23 (3):273-276 (in Chinese).[6] Zhao Yongliang, Zhao Fengying, Xue Zhen, et al. Infrared spectra and luminescent properties of p-tert-butycalix[8] Arene-DMF complexes of rare earth nitrates [J]. Chin. J. Lumin. (发光学报), 2006, 27 (3):358-362 (in Chinese).[7] Li Wenxian, Shi Xiaoyan, Sun Xiaojun, et al. Enhanced luminescence in (Dyx, Tmy) complexes [J]. Chin. J. Lumin. (发光学报), 2010, 30 (5):568-574 (in English).[8] Wang Peng, Wei Changping, Ren Xiaoming. Influences of co-doping metal ions on luminescent properties of (Eu, Tb) rare earth complexes [J]. Chin. J. Lumin. (发光学报), 2009, 30 (1):97-100 (in Chinese).[9] Toylar M D, Carter C D, Wynter C I. The infra-red spectra and structure of the rare-earth benzoates [J]. J. Inorg. Nucl. Chem., 1968, 30 (6):1503-1511.[10] Gear W J. The use of conductivity measurements in organic solvents for the characterization of coordination compounds [J]. Coord. Chem. Rew., 1971, 7 (1):81-122.[11] Carnall W T, Fileds P R, Raunaks K. Electronic energy levels of the trivalent lanthanides quoions:Eu3+ [J]. J. Chem. Phys., 1968, 49 (10):4450-4455.[12] Yan Bing, Zhang Hongjie, Wang Shubin, et al. Photophysical properties of rare earth complexes with 3, 4-furandicarboxylic acid and 1,10-phenanthroline [J]. J. Chin. Rare Earth Society (中国稀土学报), 1998, 16 (4):88-91 (in Chinese).[13] He Guosong, Li Song, Nie Libo, et al. Time-resolved fluorescent chelator BSPDA synthesis and its europium(Ⅲ) complexes fluorescence properties [J]. Chin. J. Materials Research (材料研究学报), 2006, 20 (2):208-212 (in Chinese).
0
浏览量
14
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构