浏览全部资源
扫码关注微信
北京大学 物理学院 人工微结构和介观物理国家重点实验室 北京,100871
收稿日期:2010-08-25,
修回日期:2010-12-01,
纸质出版日期:2011
移动端阅览
李广如, 秦志新, 桑立雯, 沈波, 张国义. GaN基p-i-n型雪崩探测器的制备与表征[J]. 发光学报, 2011,32(3): 262-265
LI Guang-ru, QIN Zhi-xin, SANG Li-wen, SHEN Bo, ZHANG Guo-yi. Fabrication and Characterization of GaN Based p-i-n Avalanche Photodetectors[J]. Chinese Journal of Luminescence, 2011,32(3): 262-265
制备和表征了p-i-n型的GaN基雪崩探测器。器件在-5 V下的暗电流约为0.05 nA
-20 V下的暗电流小于 0.5 nA。响应增益-偏压曲线显示
可重复的雪崩增益起始于80 V附近
在85 V左右增益达到最大为120
表明所制备的器件具有较好的质量。
C-V
测量用来确定载流子的分布和耗尽信息
结果显示
p型层在15 V左右达到耗尽
对应的空穴载流子浓度在1.910
17
cm
-1
左右
相对低的载流子浓度降低了电场限制
使探测器的工作电压相对偏高。在不同偏压下测量的光谱响应曲线显示出明显的Franz-Keldysh效应。
p-i-n GaN based avalanche UV photodetectors were fabricated and characterized. Dark current of the device is as low as 0.05 nA at the reverse bias of 5 V and <0.5 nA at 20 V. Repeatable photocurrent avalanche gain
began at around 80 V and grew up to a peak of 120 at about 85 V
demonstrating a good material quality.
C-V
mea-surement was used to determine carrier distribution and depletion information
and it showed that p-layer fully depleted at reverse bias of about 15 V
resulting in a hole concentration of 1.910
17
cm
-3
. The relative low hole concentration might lead to a weak confinement of electrical field and an increase in the operating voltage of the device. Photocurrent spectroscopy under various bias was also measured and exhibited obvious Franz-Keldysh effect.
Collins C J, Chowdhury U, Wong M M, et al. Improved solar-blind detectivity using an AlxGa1-xN heterojunction p-i-n photodiode [J]. Appl. Phys. Lett., 2002, 81 (20):3754-3756.[2] Razeghi M, Rogalski A. Semiconductor ultraviolet detectors [J]. J. Appl. Phys., 1996, 79 (10):7434-7470.[3] McClintock R, Yasan A, Mayes K, et al. High quantum efficiency AlGaN solar-blind p-i-n photodiodes [J]. Appl. Phys. Lett., 2004, 84 (8):1248-1250.[4] Zhou Mei, Zhao Degang. Effect of structure parameters on the performances of GaN Schottky barrier ultraviolet photodetectors and device design [J]. Chin. J. Lumin. (发光学报), 2009, 30 (6):824-831 (in Chinese).[5] Carrano J C, Lambert D J H, Eiting C J, et al. GaN avalanche photodiodes [J]. Appl. Phys. Lett., 2000, 76 (7):924-926.[6] Limb J B, Yoo D, Ryou J H, et al. GaN ultraviolet avalanche photodiodes with optical gain greater than 1000 grown on GaN substrates by metal-organic chemical vapor deposition [J]. Appl. Phys. Lett., 2006, 89 (1):011112-1-3.[7] Liu W B, Zhao D G, Sun X, et al. Stable multiplication gain in GaN p-i-n avalanche photodiodes with large device area [J]. J. Phys. D: Appl. Phys., 2009, 42 (1):015108-1-5.[8] Wang Ling, Bao Xichang, Zhang Wenjing, et al. Effects of the intrinsic layer width on the band-to-band tunneling current in p-i-n GaN-based avalanche photodiodes [J]. Semicond. Sci. Technol., 2009, 24 (9):095006-1-5.[9] McClintock R, Pau J C, Minder K, et al. Hole-initiated multiplication in back-illuminated GaN avalanche photodiodes [J]. Appl. Phys. Lett., 2007, 90 (14):141112-1-3.[10] Karve G, Wang S, Ma F, et al. Origin of dark counts in In0.53Ga0.47As/In0.52Al0.48As avalanche photodiodes operated in Geiger mode [J]. Appl. Phys. Lett., 2005, 86 (6):063505-1-3.[11] Verghest Simon, McIntosh K A, MoLnar Richard J, et al. GaN avalanche photodiodes operating in linear-gain mode and Geiger mode [J]. IEEE Trans. Electron Devices, 2001, 48 (3):502-511.[12] Bayram C, Pau J C, McClintock R, et al. Performance enhancement of GaN ultraviolet avalanche photodiodes with p-type delta-doping [J]. Appl. Phys. Lett., 2008, 92 (24):241103-1-3.[13] Seraphin B O, Hess R B. Franz-Keldysh effect above the fundamental edge in germanium [J]. Phys. Rev. Lett., 1965, 14 (5):138-140.
0
浏览量
166
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构