浏览全部资源
扫码关注微信
1. 中国科学院 激发态物理重点实验室 长春光学精密机械与物理研究所,吉林 长春,130033
2. 中国科学院 研究生院 北京,100039
收稿日期:2011-01-04,
修回日期:2011-02-11,
纸质出版日期:2011
移动端阅览
李斌, 左青卉. Ru(Ⅱ)配合物光学氧传感材料的合成及其传感性质[J]. 发光学报, 2011,32(3): 211-215
LI Bin, ZUO Qing-hui. Preparation and Oxygen-sensing Properties of Ruthenium(Ⅱ) Complex as Optical Oxygen-sensing Material[J]. Chinese Journal of Luminescence, 2011,32(3): 211-215
合成了一种Ru(Ⅱ)配合物功能化的有机-无机杂化材料Ru-pyttz-MCM-41
利用红外光谱和小角X射线衍射对该杂化材料进行了表征。不同氧气浓度下的发射光谱分析表明
该样品的发光能够有效地被氧分子猝灭
可以作为光学氧传感材料探测氧气浓度。氧气传感性能研究表明
该样品具有良好的灵敏度和较短的响应时间
对环境和生物化学领域氧气浓度的测定具有重要的意义。
An oxygen-sensing optical material based on Ruthenium(Ⅱ) complex grafted to the mesoporous MCM-41 (Ru-pyttz-MCM-41) was synthesized and characterized by infrared absorption spectra (IR) and small-angle X-ray diffraction (SAXRD). The study of luminescence intensity quenching behavior upon various oxygen concentrations indicate that the fluorescence intensity of Ru-pyttz-MCM-41 obviously decrease with the increased oxygen concentrations. The oxygen sensing properties were investigated: good sensitivity and a short response time of 5 s were obtained for Ru-pyttz-MCM-41
making it promising in detecting oxygen concentration in the field of environmental monitoring and biochemistry.
Xu W, McDonough III R C, Langsdorf B, et al. Oxygen sensors based on luminescence quenching: Interactions of metal complexes with the polymer supports [J]. Anal. Chem., 1994, 66 (23):4133-4141.[2] Mills A, Thomas M. Fluorescence-based thin plastic film ion-pair sensors for oxygen [J]. Analyst., 1997, 122 (1):63-68.[3] Tyson D S, Bialecki J, Castellano F N. Ruthenium (Ⅱ) complex with notably long excited lifetime [J]. Chem. Commun., 2000(23):2355-2356.[4] Krihak M K, Shahriari M R. Highly sensitive, all solid state fibre optical oxygen sensors based on the sol-gel coating technique [J]. Electron. Lett., 1996, 32 (3):240-242.[5] Velasco-Garcia N, Valencia-Gonzlez M J, Daz-Garca M E. Florescence organofilms for oxygen sensing in organic solvents using a fiber optic system [J]. Analyst., 1997, 122 (11):1405-1410.[6] Chuang H, Arnold M A. Linear calibration function for optical oxygen sensors based on quenching of ruthenium fluorescence [J]. Anal. Chim. Acta, 1998, 368 (1):83-89.[7] Zhang H R, Li B, Lei B F, et al. Preparation and oxygen sensing properties of a sol-gel derived thin film based on a covalently grafted ruthenium(Ⅱ) complex [J]. Sensor. Actuat. B-Chem., 2007, 123 (4):508-515.[8] Lei B F, Li B, Zhang H R, et al. Mesostructured silica chemically doped with RuII as a superior optical oxygen sensor [J]. Adv. Funct. Mater., 2006, 16 (14):1883-1891.[9] Demko Z P, Sharpless K B, Preparation of 5-substituted 1H-tetrazoles from nitriles in water [J]. J. Org. Chem., 2001, 66 (24):7945-7950.[10] Sprintschnik G, Sprintschnik H W, Kirsch P P, et al. Photochemical reactions in organized monolayer assemblies 6. preparation and photochemical reactivity of surfactant Ruthenium(Ⅱ) complexes in monolayer assemblies and at water-solid interfaces [J]. J. Am. Chem. Soc., 1977, 99 (15):4947-4954.[11] Sun L, Zhang H, Peng C, et al. Covalent linking of near-infrared luminescent ternary lanthanide (Er3+ , Nd3+ , Yb3+) complexes on functionalized mesoporous MCM-41 and SBA-15 [J]. J. Phys. Chem. B, 2006, 110 (14):7249-7258.[12] Malins C, Fanni S, Glever H G, et al. The preparation of a sol-gel glass oxygen sensor incorporating a covalently bound fluorescent dye [J]. Anal. Commun., 1999, 36 (1):3-4.[13] Tang Y, Tehan E C, Tao Z Y, et al. Sol-gel-derived sensor materials that yield linear calibration plots, high sensitivity, and long-term stability [J]. Anal. Chem., 2003, 75 (10):2407-2413.[14] Murtagh M T, Shahriari M R. A study of the effects of organic modification and processing technique on the luminescence quenching behavior of sol-gel oxygen sensors based on a Ru(Ⅱ) complex [J]. Chem. Mater., 1998, 10 (12):3862-3869.
0
浏览量
100
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构