浏览全部资源
扫码关注微信
1. 兰州理工大学 理学院,甘肃 兰州,730050
2. 北京邮电大学 信息光子学与光通信教育部重点实验室 北京,100876
收稿日期:2010-05-27,
修回日期:2010-08-18,
网络出版日期:2011-02-22,
纸质出版日期:2011-02-22
移动端阅览
侯尚林, 韩佳巍, 强昭珺, 孔谦. 改进型蜂巢晶格结构光子晶体光纤的色散与非线性特性[J]. 发光学报, 2011,32(2): 179-183
HOU Shang-lin, HAN Jia-wei, QIANG Zhao-jun, KONG Qian. The Dispersive and Nonlinear Properties of Photonic Crystal Fibers with Modified Honeycomb Lattice Structure[J]. Chinese Journal of Luminescence, 2011,32(2): 179-183
侯尚林, 韩佳巍, 强昭珺, 孔谦. 改进型蜂巢晶格结构光子晶体光纤的色散与非线性特性[J]. 发光学报, 2011,32(2): 179-183 DOI:
HOU Shang-lin, HAN Jia-wei, QIANG Zhao-jun, KONG Qian. The Dispersive and Nonlinear Properties of Photonic Crystal Fibers with Modified Honeycomb Lattice Structure[J]. Chinese Journal of Luminescence, 2011,32(2): 179-183 DOI:
结合蜂巢晶格与不同空气孔直径晶格二者的优势
提出一种改进型蜂巢晶格结构光子晶体光纤
采用矢量光束传输法对该光纤的色散与非线性特性进行了数值模拟
分析了色散、非线性系数与其晶格参量之间的关系。数值结果表明
该光纤在1.2~1.6 m波段内可以实现大负色散、色散平坦、正色散等多种色散特性;此外
晶格结构中空气孔直径的减小使得基模有效面积增大
从而降低了非线性系数。因此
通过调节该光纤的结构参量可以灵活地调整其色散与非线性特性
为设计光子晶体光纤提供理论参考。
Photonic crystal fibers with modified honeycomb lattice structure were proposed by combining the advantages of honeycomb lattice and lattice with different air-hole diameters. The dispersive and nonlinear properties of the proposed fibers
which formed by different structural parameters
are numerically simulated by using the vectorial beam propagation method
and the relationship of dispersion
nonlinear coefficient with the lattice structure was investigated. The results indicate that the distinct dispersive properties
which contain large negative dispersion
flattened dispersion
positive dispersion
and so on are achieved in the wavelength range of 1.2~1.6 m. Furthermore
the decrease of the diameters of air-holes in the lattice structure leads to an increase of effective area in fundamental mode which make the nonlinear coefficient lower. Thus the dispersive and nonlinear properties of the proposed fiber can be flexibly tailored by adjusting its structural parameters. This provides a reference for designing novel photonic crystal fibers.
Koshiba M, Saitoh K. Structural dependence of effective area and mode field diameter for holey fibers [J]. Opt. Express, 2003, 11 (15):1746-1756.[2] Shen L, Huang W, Jian S, et al. Design of photonic crystal fibers for dispersion-related applications [J]. J. Lightwave Technol., 2003, 21 (7):1644-1651.[3] Li Chunlei, Sheng Qiuqin. The relation between the nonlinear coefficient of PCF and its geometry parameters and the optical wavelength [J]. Acta Photonica Sinica (光子学报), 2006, 35 (5):734-737 (in Chinese).[4] Hou Shanglin, Han Jiawei. Design of a novel microstructure fiber with broadband dispersion compensation and low nonlinearity [J]. Chin. J. Lumin.(发光学报), 2009, 30 (6):882-887 (in Chinese).[5] Hou Shanglin, Han Jiawei. Influence of the outer air-holes beyond the third ring on the nonlinearity and disper-sion of photonic crystal fibers [J]. Opto-Electronic Engineering (光电工程), 2010, 37 (6):96-102 (in Chinese).[6] Hou Shanglin, Han Jiawei, Zhu Peng, et al. A novel design of a dual-core photonic crystal fiber for broadband dispersion compensation with low nonlinearity [J]. Chin. J. Lumin. (发光学报), 2010, 31 (3):449-453 (in Chinese).[7] Chen Ming, Xie Shizhong. New nonlinear and dispersion flattened photonic crystal fiber with low confinement loss [J]. Opt. Commun., 2008, 281 (8):2073-2076.[8] Wu Ming, Liu Hairong, Huang Dexiu. Dispersion property in highly nonlinear photonic crystal fiber [J]. Acta Optica Sinica (光学学报), 2008, 28 (3):539-542 (in Chinese).[9] Zsigri B, Laegsgaard J, Bjarklev A. A novel photonic crystal fibre design for dispersion compensation [J]. J. Opt. A:Pure Appl. Opt., 2004, 6 (7):717-720.[10] Wu Tzonglin, Chao Chiahsin. A novel ultraflattened dispersion photonic crystal fiber [J]. IEEE Photon. Technol. Lett., 2005, 17 (1):67-69.[11] Poli F, Cucinotta A, Selleri S, et al. Tailoring of flattened dispersion in highly nonlinear photonic crystal fibers [J]. IEEE Photon. Technol. Lett., 2004, 14 (4):1065-1067.[12] Lou Shuqin, Lou Shujie, Guo Tieying, et al. Photonic crystal fiber with novel dispersion properties [J]. Front. Optoelectron. China, 2009, 2 (2):170-177.[13] Wang Z, Ren X, Zhang X, et al. A novel design for broadband dispersion compensation microstructured fiber [J]. Chin. Opt. Lett., 2006, 4 (11):625-627.[14] Saitoh K, Koshiba M. Full-vectorial imaginary-distance beam propagation method based on a finite element scheme: application to photonic crystal fibers [J]. IEEE J. Quant. Electron., 2002, 38 (7):927-933.[15] Hadley G R. Transparent boundary condition for beam propagation [J]. Opt. Lett., 1991, 16 (9):624-626.[16] Mortensen N A. Effective area of photonic crystal fibers [J]. Opt. Express, 2002, 10 (7):341-348.
0
浏览量
99
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构