浏览全部资源
扫码关注微信
1. 南京航空航天大学 材料科学与技术学院,江苏 南京,210016
2. 南京医科大学 药学院,江苏 南京,210032
收稿日期:2010-06-04,
修回日期:2010-09-23,
纸质出版日期:2011
移动端阅览
谷刘园, 屠慧, 朱荔, 姚小泉. 基于双酚A的希夫碱型锌配位聚合物的合成及发光性能[J]. 发光学报, 2011,32(2): 127-133
GU Liu-yuan, TU Hui, ZHU Li, YAO Xiao-quan. Synthesis and Luminescent Properties of Novel Metal-organic Coordination Polymers Based on Bisphenol A[J]. Chinese Journal of Luminescence, 2011,32(2): 127-133
以双酚A 为原料合成了具有对称的桥联结构的双水杨醛
在此基础上合成了一系列的双希夫碱配体及相应的锌配位聚合物。利用红外吸收光谱、核磁共振等方法研究了化合物的分子结构
利用热重分析研究了配合物的热稳定性
利用紫外吸收、荧光光谱研究了该系列配合物的发光性能
利用循环伏安法测试了配合物的能级带隙。研究结果表明:该系列配合物具有较好的热稳定性
热分解温度为405~443 ℃;发光波长为493~503 nm
属于蓝绿光范围;量子效率和文献报道的相近;能级带隙约为3.04~3.23 eV。
Four novel bis-Schiff base ligands and their zinc(Ⅱ) coordination polymers were synthesized from the bisalicylaldehydes based on the backbone of bisphenol A. The structures
thermal stabilities
luminescent properties and energy bands were investigated by infrared spectra
1
H NMR
TG curve
UV-Vis absorption spectra and fluorescence emission spectra. The results showed that these complexes are thermally stable with high decomposition temperature at 405 ~443 ℃. The complexes emit blue-green fluorescence with the maximum emission peaks at 493 ~503 nm. Their quantum yields are close to that of the repoted literatures
the band gap is about 3.04 ~3.23 eV. The results above suggest that the novel coordination ploymers can be utilized as good organic electroluminescent materials.
Huang Chunhui, Li Fuyou, Huang Yanyi. Ultrathin Films for Optics and Electronics [M].Beijing:Beijing University Press, 2001 (in Chinese).[2] Tang C W, VanSlyke S A. Organic electroluminescent diodes [J]. Appl. Phys. Lett., 1987, 51 (12):913-915.[3] Hong Z R, Liang C J, Li R G, et al. Rare earth complex as a high-efficiency emitter in an electroluminescent device [J]. Adv. Mater., 2001, 13 (16):1241-1245.[4] Burroughes J H, Bradley D D C, Brown A R, et al. Light-emitting diodes based on conjugated polymers [J]. Nature, 1990, 347 (6293):539-540.[5] Tao X T, Suzuki H, Watanabe, et al. Metal complex polymer for second harmonic generation and electroluminescence applications [J]. Appl. Phys. Lett., 1997, 70 (12):1503-1505.[6] Wang X Y, Kimyonok A, Weck M. Functionalization of polymers with phosphorescent iridium complexes via click chemistry [J]. Chem. Commun., 2006(37):3933-3925.[7] Marin V, Holder E, Hoogenboom R, et al. Functional ruthenium(Ⅱ)- and iridium(Ⅲ)-containing polymers for potential electro-optical applications [J]. Chem. Soc. Rev., 2007, 36 (12):618-635.[8] Wang Peng, Wei Changping, Ren Xiaoming. Influences of co-doping metal ions on luminescent properties of (Eu,Tb) rare earth complexes [J]. Chin. J. Lumin. (发光学报), 2010, 30 (1):97-100 (in Chinese).[9] Ren Xiaoming, Wei Changping, Wang Peng, et al. Preparation and fluorescence properties of ternary complexes of Eu(BA)3PIP and Eu(BA)3phen [J]. Chin. J. Lumin. (发光学报), 2010, 30 (2):252-256 (in Chinese).[10] Cui Haixia, Chen Jianmin, Zhou Huidi. Synthesis and fluorescence properties or rare earth complexes with a new diamide ligand [J]. Chin. J. Lumin. (发光学报), 2010, 30 (4):457-462 (in Chinese).[11] Chang K H, Huang C C, Liu Y H, et al. Synthesis of photo-luminescent Zn(Ⅱ) Schiff base complexes and its derivative containing Pd(Ⅱ) moiety [J]. Dalton.Trans., 2004(11):1731-1738.[12] Wang P F, Xie Z Y, Hong Z R, et al. Synthesis, photoluminescence and electroluminescence of new 1H-pyrazolo quinoxaline derivatives [J]. Mater. Chem., 2003, 13 (8):1894-1899.[13] Hamada Y, Sano T, Fujita M, et al. Organic electroluminescent devices with 8-hydroxyquinoline derivative-metal comp-lexes as an emitter [J]. Jpn. J. Appl. Phys., 1993, 32 (4A):L514-L515.[14] Sano T, Nishio Y, Hamada Y, et al. Design of conjugated molecular materials for optoelectronics [J]. J. Mater. Chem., 2000, 10 (1):157-161.[15] Lin Y Y, Chan S C, Chan M C W, et al. Structural, photophysical, and electrophosphorescent properties of platinum(Ⅱ) complexes supported by tetradentate N2O2 chelates [J]. Chem. Eur. J., 2003, 9 (6):1263-1272.[16] Che C M, Chan S C, Xiang H F, et al. Tetradentate Schiff base platinum(Ⅱ) complexes as new class of phosphorescent materials for high-efficiency and white-light electroluminescent devices [J]. Chem. Commun., 2004(13):1484-1485.[17] Kwok C C, Yu S C, Sham I H T, et al. Self-assembled zinc(Ⅱ) Schiff base polymers forapplications in polymer light-emitting devices [J]. Chem. Commun., 2004(23): 2758-2759.[18] Keum S R, Choi Y K, Kim S H, et al. Symmetric and unsymmetric indolinobenzospiropyrandimers: synthesis and characterization [J]. Dyes and Pig., 1999, 41 (1):41-47.[19] Andreas Winter, Winter Friebe, Manuela Chiper, et al. Self-assembly of p-conjugated bis(terpyridine) ligands with zinc(Ⅱ) ions:new metallosupramolecular materials for optoelectronic applications [J]. Poly. Sci. Part A: Poly Chem., 2009, 47 (16):4083-4098.[20] Hou Lixin, Jia Husheng, Hao Yuying, et al. Characterization and photoluminescence properties of an azomethin-zinc complex [J]. Spectroscopy and Spectral Analysis (光谱学与光谱分析), 2008, 28 (4):766-769 (in Chinese).[21] Chen Liuqing, Xu Huixia, Wang Yanli, et al. Synthesis and characterization of a new Schiff base boron complex [J]. Chin. J. Lumin. (发光学报), 2008, 29 (1):61-66 (in Chinese).[22] Demas J N, Crosby G A. Measurement of photoluminescence quantum yields [J]. Review. J. Phys. Chem., 1971, 75 (8):991-1024.[23] Suzanna F F, Dominique L. Are fluorescence quantum yields so tricky to measure? A demonstration using familiar stationery products [J]. J. Chem. Ed., 1999, 76 (9):1260-1264.[24] Berlman I B. Empirical study of heavy-atom collisional quenching of the fluorescence state of aromatic compounds in solution [J]. J. Phys. Chem., 1973, 77 (4):562-567.[25] Becker R S. Theory and Interpretation of Fluorescence and Phosphorescence [M]. London: Wiley, 1969:139.
0
浏览量
138
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构