浏览全部资源
扫码关注微信
1. 上海大学材料科学与工程学院 上海,200072
2. 上海大学 新型显示技术及应用集成教育部重点实验室 上海,200072
收稿日期:2010-08-25,
修回日期:2010-11-15,
网络出版日期:2011-02-22,
纸质出版日期:2011-02-22
移动端阅览
周帆, 张良, 李俊, 张小文, 林华平, 俞东斌, 蒋雪茵, 张志林. Ta<sub>2</sub>O<sub>5</sub>绝缘层厚度对ZnO基薄膜晶体管器件性能的影响[J]. 发光学报, 2011,32(2): 188-193
ZHOU Fan, ZHANG Liang, LI Jun, ZHANG Xiao-wen, LIN Hua-ping, YU Dong-bin, JIANG Xue-yin, ZHANG Zhi-lin. Effect of Ta<sub>2</sub> O<sub>5</sub> Thickness on The Performances of ZnO-based Thin Film Transistors[J]. Chinese Journal of Luminescence, 2011,32(2): 188-193
周帆, 张良, 李俊, 张小文, 林华平, 俞东斌, 蒋雪茵, 张志林. Ta<sub>2</sub>O<sub>5</sub>绝缘层厚度对ZnO基薄膜晶体管器件性能的影响[J]. 发光学报, 2011,32(2): 188-193 DOI:
ZHOU Fan, ZHANG Liang, LI Jun, ZHANG Xiao-wen, LIN Hua-ping, YU Dong-bin, JIANG Xue-yin, ZHANG Zhi-lin. Effect of Ta<sub>2</sub> O<sub>5</sub> Thickness on The Performances of ZnO-based Thin Film Transistors[J]. Chinese Journal of Luminescence, 2011,32(2): 188-193 DOI:
报道了不同厚度Ta
2
O
5
栅绝缘层对氧化锌薄膜晶体管器件性能的影响。在室温下用射频磁控溅射分别制备了100
85
60
40 nm厚度的Ta
2
O
5
薄膜作为绝缘层的一组底栅氧化锌薄膜晶体管器件。从实验结果可以得出如下结论:随着Ta
2
O
5
栅绝缘层厚度的增加
相应器件的场效应迁移率下降
其数值分别是50.5
59.3
63.8
71.2 cm
2
/Vs
对应100
85
60
40 nm厚度的绝缘层。从原子力显微图像可以看到
Ta
2
O
5
薄膜表面粗糙度随着薄膜厚度的减小而降低
这是场效应迁移率得以提高的主要原因。而100
85
60
40 nm不同厚度的绝缘层相应器件的开关电流比分别是1.210
5
4.810
5
3.210
4
7.210
3
其阈值电压分别为1.9
1.5
1.2
0.9 V。从各项性能综合考虑
85 nm厚度的Ta
2
O
5
栅绝缘层所制备的薄膜晶体管器件具有最佳性能。
Bottom-gate ZnO thin-film transistors (ZnO-TFTs) were fabricated with Ta
2
O
5
film as the insulator. Ta
2
O
5
film was grown by the radio-frequency magnetron sputtering at room temperature. The thickness of the Ta
2
O
5
layers were 100
85
60
40 nm separately. The effect of the thickness on the performance of the ZnO-TFTs was studied. With the thickness of the insulator decreased from 100
85
60 nm to 40 nm
the field effect mobility increased from 50.5
59.3
63.8 to 71.2 cm
2
/Vs. The surface morphology of the Ta
2
O
5
films were checked by the atomic force microscope
which showed that the root mean square (RMS) of the Ta
2
O
5
films roughness decreases with decreasing the insulator thickness. The
I
on
/
I
off
ratio and the threshold voltage are changed with the insulator thickness.
Yu Yongqiang, Liang Qi, Ma Yuanming, et al. Influence of substrate temperature on the optical constants of ZnO thin film grown by PLD [J]. Chin. J. Lumin. (发光学报), 2003, 30 (5):297-303 (in English).[2] Kang Chaoyang, Zhao Chaoyang, Liu Zhengrong, et al. Improvement of the structure and photoelectrical properties of ZnO films based on SiC buffer layer grown on Si(111) [J]. Chin. J. Lumin. (发光学报), 2003, 30 (6):807-811 (in Chinese).[3] Liu Bingce, Liu Cihui, Sun Lijie, et al. Influence of ZnO microstructure variation on its photoelectricity characteristics [J]. Chin. J. Lumin. (发光学报), 2003, 31 (2):194-198 (in Chinese).[4] Zhong Ze, Sun Lijie, Xu Xiaoqiu, et al. Effect of high temperature annealing in nitrogen on the luminescence property of ZnO films [J]. Chin. J. Lumin. (发光学报), 2010, 31 (3):359-363 (in Chinese).[5] Hoffman R L, Norris B J, Wager J F, et al. ZnO-based transparent thin-film transistors [J]. Appl. Phys. Lett., 2003, 82 (5):733-735.[6] Masuda S, Kitamura K, Okumura Y, et al. Transparent thin film transistors using ZnO as an active channel layer and their electrical properties [J] . J. Appl. Phys., 2003, 93 (3):1624-1630.[7] Fortunato E M C, Barquinha P M C, Pimentel A C, et al. Wide-bandgap high-mobility ZnO thin-film transistors produced at room temperature [J]. Appl. Phys. Lett., 2004, 85 (13):2541-2543.[8] Wang Zhongjian, Wang Longyan, Ma Xianmei, et al. Research and progress in transparent amorphous oxide semiconductor thin film transistors [J]. Chin. J. Liq. Crys.& Disp.(液晶与显示), 2009, 24 (2):270-276 (in Chinese).[9] Ma Xianmei, Jing Hai, Ma Kai, et al. ZnO films and properties of ZnO-TFT [J]. Chin. J. Liq. Crys.& Disp.(液晶与显示), 2009, 24 (3):393-395 (in Chinese).[10] Albrecht J D, Ruden P P, Limpijumnong S, et al. High field electron transport properties of bulk ZnO [J]. J. Appl. Phys., 1999, 86 (12):6864-6867.[11] Nomura K, Ohta H, Tagaki A, et al. Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors [J]. Nature, 2004, 432 (7016):488-492.[12] Zhang Xijian, Wang Guoqing, Wang Qingpu, et al. The effect of annealing on optical properities of ZnO thin film [J]. Chin. J. Lumin.(发光学报), 2008, 29 (3):451-454 (in Chinese).[13] Park J S, Kim T W, Stryakhilev D, et al. Flexible full color organic light-emitting diode display on polyimide plastic substrate driven by amorphous indium gallium zinc oxide thin-film transistors [J] . Appl. Phys. Lett., 2009, 95 (1):013503-1-3.[14] Jackson W B, Hoffman R L, Herman G S, et al. High-performance flexible zinc tin oxide field-effect transistors [J]. Appl. Phys. Lett., 2005, 87 (19):193503-1-3.[15] Nomura K, Ohta H, Ueda K, et al. Thin-film transistor fabricated in single-crystalline transparent oxide semiconductor [J]. Science, 2003, 300 (5623):1269-1272.[16] Fortunato E, Pimentel A, Pereira L, et al. High field-effect mobility zinc oxide thin film transistors produced at room temperature [J]. J. Non-Crystalline Solids, 2004, 338-340 :806-809.[17] Krupanidhi S B, Dhananjay. Low threshold voltage ZnO thin film transistor with a Zn0.7Mg0.3O gate dielectric for transpa-rent electronics [J]. J. Appl. Phys., 2007, 101 (12):123717-1-6.[18] Knipp D, Street R A, Volkel A R. Morphology and electronic transport of polycrystalline pentacene thin-film transistors [J]. Appl. Phys. Lett., 2003, 82 (22):3907-3909.[19] Verlaak S, Arkhipov W, Heremans P. Modeling of transport in polycrystalline organic semiconductor films [J]. Appl. Phys. Lett., 2003, 82 (5):745-747.[20] Valletta A, Mariucci L, Fortunato G. Surface scattering effects in polycrystalline silicon thin film transistors. [J]. Appl. Phys. Lett., 2003, 82 (18):3119-3121.
0
浏览量
75
下载量
5
CSCD
关联资源
相关文章
相关作者
相关机构