浏览全部资源
扫码关注微信
1. 甘肃省有色金属新材料省部共建国家重点实验室, 兰州理工大学 材料科学与工程学院,甘肃 兰州,730050
2. 兰州理工大学理学院 应用物理系,甘肃 兰州,730050
收稿日期:2011-09-01,
修回日期:2011-10-12,
网络出版日期:2011-12-22,
纸质出版日期:2011-12-22
移动端阅览
倪蔚德, 吴有智, 张文林, 张材荣, 张定军. MoO<sub>3</sub>为缓冲层的高效非掺杂蓝色有机发光二极管[J]. 发光学报, 2011,32(12): 1271-1275
NI Wei-de, WU You-zhi, ZHANG Wen-lin, ZHANG Cai-rong, ZHANG Ding-jun. Highly Efficient Nondoped Blue Organic Light-emitting Diode Using MoO<sub>3</sub> as Anode Buffer Layer[J]. Chinese Journal of Luminescence, 2011,32(12): 1271-1275
倪蔚德, 吴有智, 张文林, 张材荣, 张定军. MoO<sub>3</sub>为缓冲层的高效非掺杂蓝色有机发光二极管[J]. 发光学报, 2011,32(12): 1271-1275 DOI:
NI Wei-de, WU You-zhi, ZHANG Wen-lin, ZHANG Cai-rong, ZHANG Ding-jun. Highly Efficient Nondoped Blue Organic Light-emitting Diode Using MoO<sub>3</sub> as Anode Buffer Layer[J]. Chinese Journal of Luminescence, 2011,32(12): 1271-1275 DOI:
以典型蓝色发光材料-联苯乙烯衍生物(4
4'-bis(2
2'-diphenylvinyl)- 1
1'-biphenyl
DPVBi)为发光 层
采用MoO
3
为阳极缓冲层制备了结构简单的非掺杂型蓝色有机电致发光器件。在电流密度为20 mA/cm
2
、 MoO
3
缓冲层厚度为0.5 nm对器件效率约为无缓冲层器件效率的18倍
为通常酞菁铜(Copper phthalocyanine
CuPc)缓冲层器件效率的1.2倍。器件启亮电压为3.3 V
最高外量子效率为3.1%
最高亮度达到16 000 cd/m
2
器件CIE色坐标(Commission Internationale de l'Eclairage co-ordinates)为(0.15
0.15)。器件性能的提升归因于MoO
3
缓冲层的插入在阳极/有机层间形成了良好的欧姆接触。
Contact properties between electrodes and organic layers play a key role for the performance of an organic device. Ohmic contacts at electrode/organic interfaces are required for an ideal device. In order to improve performance of 4
4'-bis(2
2'-diphenylvinyl)-1
1'-biphenyl (DPVBi
a typical blue organic luminescent material) based organic light-emitting diode
MoO
3
was introduced at anode interface as a buffer layer and a highly efficient bright nondoped blue electroluminescent device with low driving voltage was fabricated. Luminescent efficiency of the device with a 0.5-nm-thick MoO
3
buffer layer is 18 times higher than that of the device without buffer layer
and 1.2 times higher than that of the device with a conventional copper phthalocyanine (CuPc) buffer layer at a current density of 20 mA/cm
2
. Turn-on voltage
maximum external quantum efficiency and luminance of the device are 3.3 V
3.1% and 16000 cd/m
2
respectively. Commission Internationale de l'Eclairage (CIE) co-ordinates are (0.15
0.15). Realization of excellent device performance is attributed to formation of ohmic contact between anode and organics by insertion of MoO
3
.
Hung L S, Tang C W, Mason M G. Enhanced electron injection in organic electroluminescent devices using an Al/LiF electrode [J]. Appl. Phys. Lett., 1997, 70 (2):152-154.[2] Brown T M, Friend R H, Millard I S, et al. Electronic line-up in light-emitting diodes with alkali-halide/metal cathodes [J]. J. Appl. Phys., 2003, 93 (10):6159-6172.[3] VanSlyke S A, Chen C H, Tang C W. Organic electroluminescent devices with improved stability [J]. Appl. Phys. Lett., 1996, 69 (15):2160-2162.[4] Elschner A, Bruder F, Heuer H W, et al. PEDT/PSS for efficient hole-injection in hybrid organic light-emitting diodes [J]. Synth. Met., 2000, 111-112 (1):139-143.[5] Liao Y Q, Gan Z H, Liu X Y. Highly efficient blue phosphorescent organic light emitting devices with SrF2 doped hole transporting layer [J]. Chin. J. Lumin.(发光学报), 2011, 32 (8):803-808 (in Chinese).[6] Huang J S, Pfeiffer M, Werner Blochwitz-Nimoth J, et al. Low-voltage organic electroluminescent devices using pin structures [J]. Appl. Phys. Lett., 2002, 80 (1):139-141.[7] D'Anderade B W, Forrest S R, Chwang A B. Operational stability of electrophosphorescent devices containing p and n doped transport layers [J]. Appl. Phys. Lett., 2003, 83 (19):3858-3860.[8] Zhang H M, Dai Y F, Ma D G, et al. High efficiency tandem organic light-emitting devices with Al/WO3/Au interconnecting layer [J]. Appl. Phys. Lett., 2007, 91 (12):123504-1-3.[9] Cao J, Jiang X Y, Zhang Z L. MoOx modified Ag anode for top-emitting organic light-emitting devices [J]. Appl. Phys. Lett., 2006, 89 (25):252108-1-3.[10] Wu Y Z, Zheng X Y, Sun R G, et al. Highly efficient distyrylarylene (DSA) derivative blue organic electroluminescent device with improved color purity [J]. Acta Optica Sinica(光学学报), 2004, 24 (8):1120-1125 (in Chinese).[11] Hosokawa C, Higashi H, and Nakamura H, et al. Highly efficient blue electroluminescence from distyrylarylene emitting layer with a new dopant [J]. Appl. Phys. Lett., 1995, 67 (26):3853-3855.[12] Zhang Y, Li Y, Duan L, et al. Efficient organic light-emitting diode using lithium tetra-(8-hydroxy-quinolinato) boron as the electron injection layer [J]. Acta Phys. Chim. Sin. (物理化学学报), 2007, 23 (4):455-458 (in Chinese).[13] Hou Y B, Yang X H, Li Y B, et al. Electric field induced quenching of photoluminescence of poly(N-vinylarbaole) (PVK) doped with dyes [J]. Thin Solid Films, 2000, 363 (1-2):248-251.[14] Stampor W, Kalinowski J, Di P, et al. Electric field effect on luminescence efficiency in 8-hydroxyquinoline aluminum (Alq3) thin films [J]. Appl. Phys. Lett., 1997, 70 (15):1935-1937.[15] Matsushima T, Kinoshita Y and Murata H. Formation of Ohmic hole injection by inserting an ultrathin layer of molybdenum trioxide between indium tin oxide and organic hole-transporting layers [J]. Appl. Phys. Lett., 2007, 91 (25):253504-253506.
0
浏览量
120
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构