浏览全部资源
扫码关注微信
1. 华东交通大学 机电工程学院,江西 南昌,330013
2. 南京航空航天大学 理学院,江苏 南京,210016
收稿日期:2011-06-04,
修回日期:2011-07-24,
网络出版日期:2011-11-22,
纸质出版日期:2011-11-22
移动端阅览
李鹏, 王乐新, 赵志敏. 基于概率神经网络的荧光光谱法识别高甘油三脂血清[J]. 发光学报, 2011,32(11): 1192-1196
LI Peng, WANG Le-xin, ZHAO Zhi-min. Hypertriglyceridemia Serum Recognition Using Fluorescence Spectroscopic Analysis Based on Probabilistic Neural Networks[J]. Chinese Journal of Luminescence, 2011,32(11): 1192-1196
针对因正常和高甘油三脂血清荧光光谱混叠致使其识别率不高的问题
首先测量了正常和高甘油三脂血清样品在260
370
580 nm激发光下产生的荧光光谱
并以荧光强度作为样品的初始特征;其次
采用主成分分析法对初始特征进行分析和提取
获得了样品的特征向量;最后
构建了4层概率神经网络
并对正常和高甘油三脂血清样品进行了识别。对采用不同荧光光谱进行血清样品识别的效果进行了对比
结果表明
采用260 nm和370 nm荧光光谱识别正常和高甘油三脂血清的正确率分别为100%和95%。实验验证了研究方案的可行性和效果
对发展荧光光谱技术在识别高甘油三脂血症中的应用具有重要的意义和价值。
The fluorescence spectra overlap of normal serum and hypetriglyceridemia serum will result in low recognition rate. The paper reports a recognition method of hypertriglyceridemia serum using fluorescence spectroscopic analysis based on principal component analysis and probabilistic neural networks. Firstly
fluorescence spectra of normal serum and hypertriglyceridemia serum were measured with the excitation wavelengths of 260
370
580 nm. And the sample's initial feature vector was defined according to fluorescence intensities. Secondly
principal component analysis was used to extract the initial feature vector and establish new sample's feature vector according to the cumulate reliability (>95%). Finally
the four-layer probabilistic neural network was founded for serum samples' recognition. Study designed seven groups of experimental scheme by choosing different fluorescence spectrum for recognition effect comparison. The result showed that recognition rates of the normal serum and hypertriglyceridemia serum were 100% and 95% respectively using fluorescence spectra with the excitation wavelengths of 260 nm and 370 nm. The feasibility and effect of the recognition scheme were demonstrated. The study provides an important guidance for developing the recognition technique of hypertriglyceridemia serum using fluorescence spectroscopic analysis based on probabilistic neural networks.
Hao Suli, Liu Jinxiu, Xu Kangsen. Study on ELSD determination of structural fat emulsion injection for structural trigly-cerides [J]. Chin. J. Phar. Anal. (药物分析杂志), 2004, 24 (3):301-303 (in Chinese).[2] Aodeng Gaowa, Jin Yingchun. Spectroscopic studies on the interaction between fenbufen and bovine serum albumin [J]. Chin. J. Lumin. (发光学报), 2011, 32 (4):404-410 (in Chinese).[3] Wang Lexin, Zhao Zhimin. Resonance scattering spectra of normal serums and abnormal serums [J]. Chin. J. Lumin. (发光学报), 2011, 32 (2):200-204 (in Chinese).[4] Ling Mingsheng, Qian Zhiyu, Liang Chaoying. Research on blood glucose concentration monitoring by fluorescence spectrum [J]. Chinese Journal of Quantum Electronics (量子电子学报), 2007, 24 (5):635-639 (in Chinese).[5] Hu Youbo, Li Donggang, Li Junwei, et al. Determination of selenium in blood by hydride generation atomic fluorescence spectrometry [J]. Chemical Engineer (化学工程师), 2007(7):25-26 (in Chinese).[6] Li Yongzhi, Yang Jingyu, Wu Songsong. A class-information-incorporated kernel principal component analysis method [J]. PR & AI (模式识别与人工智能), 2008, 21 (3):410-415 (in Chinese).[7] Specht D F. Probabilistic neural networks [J]. Neural Networks, 1990, 3 (1):109-118.[8] Lee J J, Kim D, Chang S K. An improved application technique of the adaptive probabilistic neural network for predicting concrete strength [J]. Computational Materials Science, 2009, 44 (3):988-998.[9] Kim D, Kim D H, Chang S. Application of probabilistic neural network to design breakwater armor blocks [J]. Ocean Engineering, 2008, 35 (3-4):294-300.
0
浏览量
157
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构