浏览全部资源
扫码关注微信
1. 中国科学院物理研究所 清洁能源前沿研究重点实验室 北京,100190
2. 天津中环新光科技有限公司 天津,300385
收稿日期:2011-05-19,
修回日期:2011-06-30,
网络出版日期:2011-11-22,
纸质出版日期:2011-11-22
移动端阅览
王小丽, 王文新, 江洋, 马紫光, 崔彦翔, 贾海强, 宋京, 陈弘. 具有超晶格应力调制结构的绿光InGaN/GaN多量子阱的发光特性[J]. 发光学报, 2011,32(11): 1152-1158
WANG Xiao-li, WANG Wen-xin, JIANG Yang, MA Zi-guang, CUI Yan-xiang, JIA Hai-qiang, SONG Jing, CHEN Hong. Luminescent Performances of Green InGaN/GaN MQW LED Employing Superlattices Strain Adjusting Structures[J]. Chinese Journal of Luminescence, 2011,32(11): 1152-1158
王小丽, 王文新, 江洋, 马紫光, 崔彦翔, 贾海强, 宋京, 陈弘. 具有超晶格应力调制结构的绿光InGaN/GaN多量子阱的发光特性[J]. 发光学报, 2011,32(11): 1152-1158 DOI:
WANG Xiao-li, WANG Wen-xin, JIANG Yang, MA Zi-guang, CUI Yan-xiang, JIA Hai-qiang, SONG Jing, CHEN Hong. Luminescent Performances of Green InGaN/GaN MQW LED Employing Superlattices Strain Adjusting Structures[J]. Chinese Journal of Luminescence, 2011,32(11): 1152-1158 DOI:
研究了具有InGaN/GaN超晶格(SL)插入结构的绿光InGaN/GaN多量子阱(MQW)的发光特性。结构测试表明
SL插入结构并没有引起MQW中平均In组份的增加
而是改变了In组份的分布
形成了高In组份的量子点和低In组份量子阱。其电致发光(EL)谱和光致发光(PL)谱均出现了双发光峰。我们认为这两个 峰分别来自于量子点和量子阱
且存在着载流子从阱向点转移的输运机制。最后变温PL积分强度的Arrhenius 拟合表明
SL插入结构并没有在MQW中引入新的缺陷
使其发光效率下降。
Green InGaN/GaN multiple quantum well(MQW) LEDs employing InGaN/GaN superlattice(SL) structure were studied. The distribution of indium within the MQWs is changed by inserting the InGaN/GaN SL. Meanwhile
the average indium content of MQW does not change. Two InGaN-related peaks that were clearly found in the electroluminescence(EL) and photoluminescence(PL) spectrum
which are assigned to In-rich quantum dots(QD) and the InGaN matrix
respectively. It is suggested that the carrier drifts from the InGaN matrix to the In-rich QD. It could be concluded that employing SL structures is an effective way to adjust the wavelength of InGaN/GaN MQW without introducing new defects in the MQWs.
Nakamura S, Mukai T, Senoh M. Candela-class high-brightness InGaN/AlGaN double-heterostructure blue light-emitting diodes [J]. Appl. Phys. Lett., 1994, 64 (13):1687-1689.[2] Nakamura S. The roles of structural imperfections in InGaN-based blue light-emitting diodes and laser diodes [J]. Science, 1998, 281 (5379):956-961.[3] Viswanath A K, Lee J I, Kim S T, et al. Growth of good quality InGaN multiple quantum wells by MOCVD [J]. Journal of Crystal Growth, 2004, 260 (3-4):322-326.[4] Lu Huimin, Chen Genxiang. Influence of polarization effect on optoelectronic properties of InGaN/GaN multiple quantum well [J]. Chin. J. Lumin.(发光学报), 2011, 32 (3):266-271 (in Chinese).[5] Miller D A B, Chemla D S, Damen T C, et al. Band-edge electroabsorption in quantum well structures:The quantum-confined stark effect [J]. Phys. Rev. Lett., 1984, 53 (22):2173-2176.[6] Miller D A B, Chemla D S, Damen T C, et al. Electric field dependence of optical absorption near the band gap of quantum-well structures [J]. Phys. Rev. B, 1985, 32 (2):1043-1060.[7] Niu Nanhui, Wang Huaibing, Liu Jianping, et al. Enhanced luminescence of InGaN/GaN multiple quantum wells by strain reduction [J]. Solid-State Electronics, 2007, 51 (6):860-864.[8] Lu Chihfeng, Huang Chifeng, Chen Yungsheng, et al. Phosphor-free monolithic white-light LED [J]. IEEE Journal of Selected Topics in Quantum Electronics, 1999, 15 (4):1210-1217.[9] Huang Lirong, Wen Feng, Tong Liangzhu, et al. Wavelength red-shift of long wavelength InGaN/GaN multi-quantum well by using an InGaN underlying layer [J]. Chin. Phys. Lett., 2009, 26 (7):078502-1-4.[10] Xing Bing, Cao Wenyu, Du Weimin. Temperature-dependent PL of InGaN/GaN multiple quantum wells with variable content of In [J]. Chin. J. Lumin.(发光学报), 2010, 31 (6):864-869 (in Chinese).[11] Wang Xiaohui, Jia Haiqiang, Guo Liwei, et al. White light-emitting diodes based on a single InGaN emission layer [J]. Appl. Phys. Lett., 2007, 91 (16):161912-1-3.[12] Fang H, Sang L W, Zhao L B, et al. Luminescent properties in the strain adjusted phosphor-free GaN based white light-emitting diode [J]. Appl. Phys. Lett., 2008, 93 (26):261117-1-3.[13] Xing Yanhui, Deng Jun, Han Jun, et al. Improving the quantum well properties with n-type InGaN/GaN superlattices layer [J]. Acta Physics Sinica (物理学报), 2009, 58 (1):590-595 (in Chinese).[14] Narukawa Y, Kawakami Y, Funato M, et al. Role of self-formed InGaN quantum dots for exciton localization in the purple laser diode emitting at 420 nm [J]. Appl. Phys. Lett., 1997, 70 (8):981-983.[15] Nistor L, Bender H, Vantomme A, et al. Direct evidence of spontaneous quantum dot formation in a thick InGaN epilayer [J]. Appl. Phys. Lett., 2000, 77 (4):507-509.[16] Wang T, Nakagawa D, Wang J, et al. Photoluminescence investigation of InGaN/GaN single quantum well and multiple quantum wells [J]. Appl. Phys. Lett., 1998, 73 (24):3571-3573.[17] Eliseev P G, Perlin P, Lee J, et al. "Blue" temperature-induced shift and band-tail emission in InGaN-based light sources [J]. Appl. Phys. Lett., 1997, 71 (5):569-571.[18] Bimberg D, Sondergeld M, Grobe E. Thermal eissociation of excitons bounds to neutral acceptors in high-purity GaAs [J]. Phys. Rev. B, 1971, 4 (10):3451-3455.[19] Gotz W, Johnson N M, Chen C, et al. Activation energies of Si donors in GaN [J]. Appl. Phys. Lett., 1996, 68 (22):3144-3146.[20] Teo K L, Colton J S, Yu P Y, et al. An analysis of temperature dependent photoluminescence line shapes in InGaN [J]. Appl. Phys. Lett., 1998, 73 (12):1697-1699.
0
浏览量
360
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构