浏览全部资源
扫码关注微信
1. 中国科学院研究生院 北京,100049
2. 中国科学院 激发态物理重点实验室 长春光学精密机械与物理研究所,吉林 长春,130033
收稿日期:2011-08-12,
修回日期:2011-09-07,
网络出版日期:2011-12-22,
纸质出版日期:2011-12-22
移动端阅览
庄陶钧, 苏子生, 刘亚东, 初蓓, 李文连, 范翊. Ag纳米颗粒对有机小分子太阳能电池性能的改善[J]. 发光学报, 2011,32(12): 1266-1270
ZHUANG Tao-jun, SU Zi-sheng, LIU Ya-dong, CHU Bei, LI Wen-lian, FAN Yi. Enhanced Performance of Small Molecular Weight Organic Solar Cells by Incorporating Ag Nanoparticles[J]. Chinese Journal of Luminescence, 2011,32(12): 1266-1270
庄陶钧, 苏子生, 刘亚东, 初蓓, 李文连, 范翊. Ag纳米颗粒对有机小分子太阳能电池性能的改善[J]. 发光学报, 2011,32(12): 1266-1270 DOI:
ZHUANG Tao-jun, SU Zi-sheng, LIU Ya-dong, CHU Bei, LI Wen-lian, FAN Yi. Enhanced Performance of Small Molecular Weight Organic Solar Cells by Incorporating Ag Nanoparticles[J]. Chinese Journal of Luminescence, 2011,32(12): 1266-1270 DOI:
在有机小分子太阳能电池CuPc/C
60
和TiOPc/C
60
的阳极ITO表面分别制备了一层Ag纳米颗粒
并采用MoO
3
作为阳极缓冲层
器件的性能均得到有效改善。Ag纳米颗粒的引入所形成的表面等离子激元共振可显著提高有机光活性层的吸收效率和光生激子的分解效率;而MoO
3
有效抑制了光生激子在有机/金属界面处发生的猝灭
提高了器件的短路电流
并保持其它性能不变
最终提高器件的光电转化效率。
Enhanced performance of small molecular weight organic solar cells based on CuPc/C
60
and TiOPc/C
60
with Ag nanoparticles fabricated on the ITO anode and MoO
3
as the anode buffer layer has been demonstrated. Surface plasmon induced by the incorporation of Ag nanoparticles results in the increased absorption efficiency and photogenerated exciton dissociation probability of the photoactive layers. Meanwhile
the quenching of the photogenerated excitons at the organic/metal interface can be successfully restricted by the MoO
3
anode buffer layer. Consequently
the short-circuit current is improved and the other parameters maintain unaffected
which leads to an enhanced power conversion efficiency of the devices.
Tang C W. Two-layer organic photovoltaic cell [J]. Appl. Phys. Lett., 1986, 48 (2):183-185.[2] Chen H Y, Hou J H, Zhang S Q, et al. Polymer solar cell with enhanced open voltage-circuit and efficiency [J]. Nat. Photonics, 2009, 3 (11):649-653.[3] Fan Di, Chu Bei, Li Wenlian, et al. Organic film photovoltaic cell with rare-earth complex [J]. Chin. J. Lumin. (发光学报), 2003, 24 (2):208-210 (in Chinese).[4] Hutter E, Fendler J H. Exploitation of localized surface plasmon resonance [J]. Adv. Mater., 2004, 16 (19):1685-1706.[5] Westphalen M, Kreibig U, Rostalski J, et al. Metal cluster enhanced organic solar cells [J]. Sol. Energy Mater. Sol. Cells, 2000, 61 (1):97-105.[6] Morfa A J, Rowlen K L. Plasmon-enhanced solar energy conversion in organic bulk heterojunction photovoltaics [J]. Appl. Phys. Lett., 2008, 92 (1): 013504-1-3.[7] Kim S S, Na S I, Jo J, et al. Plasmon enhanced performance of organic solar cells using electrodeposited Ag nanoparticles [J]. Appl. Phys. Lett., 2008, 93 (7):073307-1-3.[8] Hirose Y, Kahn A, Aristov V, et al. Chemistry and electronic properties of metal-organic semiconductor interfaces: Al, Ti, In, Sn, Ag, and Au on PTCDA [J]. Phys. Rev. B, 1996, 54 (19):13748-13758.[9] Peumans P, Bulovic V, Forrest S R. Efficient photon harvesting at high optical intensities in ultrathin organic double-heterostructure photovoltaic diodes [J]. Appl. Phys. Lett., 2000, 76 (19):2650-2652.[10] Lee J, Kim S Y, Kim C, et al. Enhancement of the short circuit current in organic photovoltaic devices with microcavity structures [J]. Appl. Phys. Lett., 2010, 97 (8):083306-1-3.[11] de Jong M P, van IJzendoom L J, de Voigt M J A. Stability of the interface between indium-tin-oxide and poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) in polymer light-emitting diodes[J]. Appl. Phys. Lett., 2000, 77 (14):2255-2257.[12] Kemerink M, Timpanaro S, de Kok M M, et al. Three-dimensional inhomogeneities in PEDOT∶PSS films [J]. J. Phys. Chem. B, 2004, 108 (49):18820-18825.[13] Hancox I, Sullivan P, Chauhan K V, et al. The effect of a MoOx hole-extracting layer on the performance of organic photovoltaic cells based on small molecule planar heterojunctions [J]. Org. Electron., 2010, 11 (12):2019-2025.[14] Tvingstedt K, Persson N K, Inganas O. Surface Plasmon increase absorption in polymer photovoltaic cells [J]. Appl. Phys. Lett., 2007, 91 (11):113514-1-3.[15] Chen F C, Wu J L, Lee C L, et al. Plasmonic-enhanced polymer photovoltaic devices incorporating solution-processable metal nanoparticles [J]. Appl. Phys. Lett., 2009, 95 (1):013305-1-3.
0
浏览量
180
下载量
8
CSCD
关联资源
相关文章
相关作者
相关机构