浏览全部资源
扫码关注微信
浙江大学 硅材料国家重点实验室 材料科学与工程学系,浙江 杭州,310027
收稿日期:2011-09-07,
修回日期:2011-10-27,
网络出版日期:2011-12-22,
纸质出版日期:2011-12-22
移动端阅览
阚保涛, 汪鑫, 叶春丽, 吕建国, 叶志镇. 高度均一ZnO纳米梭的水热法制备及其性能[J]. 发光学报, 2011,32(12): 1205-1209
KAN Bao-tao, WANG Xin, YE Chun-li, LV Jian-guo, YE Zhi-zhen. Synthesis and Properties of Highly Homogeneous ZnO Nanoshuttles by Hydrothermal Method[J]. Chinese Journal of Luminescence, 2011,32(12): 1205-1209
以六亚甲基四胺和硝酸锌为原料
采用水热法在90 ℃条件下反应24 h
于Si衬底上制备出一维ZnO纳米梭材料。采用场发射扫描电镜、X射线衍射仪和高分辨透射电镜等方法对样品形貌和晶体结构进行了表征。结果表明
所得ZnO纳米梭形貌一致、尺寸均匀
为六方纤锌矿型结构
具有良好的结晶性能。对ZnO纳米梭的光致发光性能的研究表明
该纳米梭具有很强的紫外发光峰
缺陷发光很弱
说明其结晶质量良好。本文还对ZnO纳米梭的水热反应机理和形核长大机制进行了探讨。
One-dimensional ZnO nanoshuttles were synthesized on Si substrates by a hydrothermal method at 90 ℃ for 24 h using hexamethyenetetramine(HMT) and zinc nitrate as raw materials. The morphology and crystal structure were characterized by field-emission scanning electron microscopy
X-ray diffraction
and high resolution transmission electron microscope. All the data indicated that ZnO nanoshuttles are homogeneous in morphology and uniform in size
with a single-crystal hexagonal wurtzite structure and acceptable crystal quality. Room-temperature photoluminescent spectra showed that a strong near-bang-edge UV emission peak and a much weak defect emission
which suggested that ZnO nanoshuttles have a good optical quality. The nucleation and growth mechanism in the reaction process of ZnO nanoshuttles were also discussed in this work.
Yamazoe N, Anno Y, Maekawa T, et al. Zinc-oxide-based semiconductor sensors for detecting acetone and capronaldehyde in the vapour of consomme soup [J]. Sens. Actuator B, 1995, 25 (1-3):623-627.[2] Li Qingwei, Bian Jiming, Wang Jingwei, et al. Optical properties of Co-doped ZnO nanorods synthesized by a hydrothermal method [J]. Chin. J. Lumin. (发光学报), 2010, 31 (2):253-257 (in Chinese).[3] Li B S, Liu Y C, Zhi Z Z, et al. Optical properties and electrical characterization of p-type ZnO thin films prepared by thermally oxiding Zn3N2 thin films [J]. J. Materials Research, 2003, 18 (1):8-13.[4] Li Y, Meng G W, Zhang L D, et al. Ordered semiconductor ZnO nanowire arrays and their photoluminescence properties [J]. Appl. Phys. Lett., 2000, 76 (15):2011-2013.[5] Pan Zhengwei, Dai Zurong, Wang Zhonglin. Nanobelts of semiconducting oxides [J]. Science, 2001, 291 (5510):1947-1949.[6] Huang Michael H, Wu Yiying, Feick Henning, et al. Catalytic growth of zinc oxide nanowires by vapor transport [J]. Adv. Mater., 2001, 13 (2):113-116.[7] Ng Hou Tee, Chen Bin, Li Jun, et al. Optical properties of single-crystalline ZnO nanowires on m-sapphire [J]. Appl. Phys. Lett., 2003, 82 (13):2023-2025.[8] Kong X Y, Wang Z L. Spontaneous polarization-induced nanohelixes, nanosprings, and nanorings of piezo-electric nanobelts [J]. Nano Lett., 2003, 3 (12):1625-1631.[9] Song Jinhui, Zhou Jun, Wang Zhonglin. Piezoelectric and semiconducting coupled power generating process of a single ZnO belt/wire [J]. Nano Lett., 2006, 6 (8):1656-1662.[10] Arnold M S, Avouris P, Pan Z W, et al. Field-effect transistors based on single semiconducting oxide nanobelts [J]. J. Phys. Chem. B, 2003, 107 (3):659-663.[11] Park W I, Kim J S, Yi G C, et al. Fabrication and electrical characteristics of high-performance ZnO nanorod field-effect transistors [J]. Appl. Phys. Lett., 2004, 85 (21): 5052-5054.[12] Keem K Y, Jeong D Y, Kim S S, et al. Fabrication and device characterization of omega-shaped-gate ZnO nanowire field-efect transistors [J]. Nano Lett., 2006, 6 (7):1454-1458.[13] Sadek Abu Z, Choopun Supab, Wlodarski Wojtek, et al. Characterization of ZnO nanobelt-based gas sensor for H2, NO2, and hydrocarbon sensing [J]. IEEE Sensors Journal, 2007, 7 (6):919-924.[14] Greene L E, Law M, Tan D H, et al. General route to vertical ZnO nanowire arrays using textured ZnO seeds [J]. Nano Lett., 2005, 5 (7):1231-1236.[15] Bae Young Sook, Kim Dong Chan, Ahn Cheol Hyoun, et al. Growth of ZnO nanorod arrays by hydrothermal method using homo-seed layers annealed at various temperatures [J]. Surf. Interface Anal., 2010, 42 (6-7):978-982.[16] Tong Yanhong, Liu Yichun, Dong Lin, et al. Growth of ZnO nanostructures with different morphologies by using hydrothermal technique [J]. J. Phys. Chem. B, 2006, 110 (41):20263-20267.[17] Huang M H, Wu Y Y,Feick H N, et al. Catalytic growth of ZnO nanowire by vapor transport [J]. Adv. Mater., 2001, 13 (2):113-116.[18] Dai Y, Zhang Y, Li Q K. Synthesis and optical properties of tetrapod-like zinc oxide nanorods [J]. Chemical Physics Lett., 2002, 358 :83-86.[19] Meng X Q, Shen D Z, Zhang J Y, et al. The structural and optical properties of ZnO nanorod arrays [J]. Solid State Communications, 2005, 135 :179-182.[20] Park W I, Kim D H, Jung S W, et al. Metalorganic vapor-phase epitaxial growth of vertically well-aligned ZnO nanorods [J]. Appl. Phys. Lett., 2002, 80 (22):4232-4234.[21] Yu K, Zhang Y S, Luo L Q, et al. Synthesis of ZnO nanostructures on CuO catalyzed porous silicon substrate [J]. Materials Letters, 2005, 59 (27):3525-3529.[22] Lionel Vayssieres. Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions [J]. Adv. Mater., 2003, 15 (5):464-466.[23] Jin Fujiang, Li Zhen, Li Fei. Hydrothermal synthesis and luminescence performance of ZnO nanorods [J]. J. Functional Materials and Devices (功能材料与器件学报), 2007, 13 (5):455-456 (in Chinese).
0
浏览量
317
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构