浏览全部资源
扫码关注微信
1. 中国科学院研究生院 北京,100049
2. 中国科学院 发光学及应用国家重点实验室 长春光学精密机械与物理研究所,吉林 长春,130033
收稿日期:2011-04-27,
修回日期:2011-07-01,
网络出版日期:2011-11-22,
纸质出版日期:2011-11-22
移动端阅览
李颜涛, 陈红, 褚明辉, 刘星元. 耦合微腔结构的有机电致发光器件[J]. 发光学报, 2011,32(11): 1186-1191
LI Yan-tao, CHEN Hong, CHU Ming-hui, LIU Xing-yuan. Organic Light-emitting Devices with A Coupled Microcavity[J]. Chinese Journal of Luminescence, 2011,32(11): 1186-1191
研究了耦合微腔结构的有机发光器件的光学和电致发光性能。通过将被动腔作为底部反射镜的方法
简化了耦合微腔的光学和发光性能的模拟
所得到的结果与实验符合得较好。在相同电流密度下与同样结构的普通OLED相比
耦合腔OLED的光谱强度在502 nm处增强了3.6倍
在550 nm处增强了5.6倍
光谱积分强度增加了0.5倍。普通OLED的最大电流效率和亮度是4.2 cd/A 和13 600 cd/m
2
。而耦合腔OLED则为7.0 cd/A 和 22 660 cd/m
2
。这种结构的器件出射光更集中于腔轴方向
有利于设计开发较高效率的有机激光器件。
The optical and electroluminescent(EL) properties of organic light emitting devices(OLED) with a coupled microcavity(CMC) structure were investigated. CMC is a kind of complicated microcavity. The modeled optical and luminescent properties of the CMC is simplified by treating the passive cavity as a bottom mirror
and consistent with the measured results. The EL spectral radiance of the CMC in the normal direction was enhanced by a factor of 3.6 at peak of 502 nm
5.6 at peak of 550 nm
and 0.5 at the whole spectrum region comparing with the normal OLED driving at the same current density. The highest current efficiency and luminance of 7.0 cd/A and 22 660 cd/m
2
for the CMC were obtained in the normal direction
comparing with those of 4.2 cd/A and 13 600 cd/m
2
for the noncavity OLED.
Pavesi L, Mulloni V. All porous silicon microcavities: growth and physics [J]. J. Lumin., 1999, 80 (1-4):43-52.[2] Shimada R, Xie J, Avrutin V, et al. Cavity polaritons in ZnO-based hybrid microcavities [J]. Appl. Phys. Lett., 2008, 92 (1):011127-1-3.[3] Plakhotnik T. Simple microcavity for single-photon generation [J]. Opt. Exp., 2005, 13 (8):3049-3054.[4] Streubel K, Helin U, Oskarsson V, et al. High-brightness visible(660 nm) resonant-cavity light-emitting diode [J]. IEEE Photon. Technol. Lett., 1998, 10 (12):1685-1687.[5] Degen C, Fischer I, Elser W. Transverse modes in oxide confined VCSELs:Influence of pump profile, spatial hole bur-ning, and thermal effects [J]. Opt. Exp., 1999, 5 (3):38-47.[6] Jeong S M, Takanishi Y, Ishikawa K, et al. Sharply directed emission in microcavity organic light-emitting diodes with a cholesteric liquid crystal film [J]. Opt. Comm., 2007, 273 (1):167-172.[7] Ma F, Liu X, Zhang C, et al. Design and fabrication of pure green color microcavity organic light emitting device [J]. Jpn. J. Appl. Phys., 2006, 45 (12):9224-9227.[8] Stanley R P, Houdr R, Oesterle U, et al. Coupled semiconductor microcavities [J]. Appl. Phys. Lett., 1994, 65 (16):2093-2095.[9] Michler P, Hilpert M, Reiner G. Dynamics of dual-wavelength emission from a coupled semiconductor microcavity laser [J]. Appl. Phys. Lett., 1997, 70 (16)2073-2075.[10] Bienstman P, Baets R. The RC2LED:A novel resonant-cavity LED design using a symmetric resonant cavity in the outcoupling reflector [J]. IEEE J. Quantum Electron., 2000, 36 (6):669-673.[11] Stelitano S, De Luca G, Savasta S, et al. Vertical coupled double organic microcavities[J]. Appl. Phys. Lett., 2009, 95 (9):093303-1-3.[12] Celii F G, Harton T B, Phillips O F. Characterization of organic thin films for OLEDs using spectroscopic ellipsometry [J]. J. Electron. Mater., 1997, 26 (4):366-371.
0
浏览量
138
下载量
3
CSCD
关联资源
相关文章
相关作者
相关机构