浏览全部资源
扫码关注微信
1. 重庆理工大学 光电信息学院, 重庆 400054
2. 重庆理工大学 化工学院 重庆,400054
3. 重庆大学 光电工程学院 重庆,400044
4. 中国科学院 国际材料物理中心,辽宁 沈阳,110016
收稿日期:2011-07-28,
修回日期:2011-08-24,
网络出版日期:2011-11-22,
纸质出版日期:2011-11-22
移动端阅览
冯文林, 李铁, 陈志, 张盈, 曾超, 杨蕾. 掺铕钼酸钆荧光粉的制备与发光性能分析[J]. 发光学报, 2011,32(11): 1143-1146
FENG Wen-lin, LI Tie, CHEN Zhi, ZHANG Yin, ZENG Cao, YANG Lei. Synthesis and Luminescent Properties of Eu<sup>3+</sup> Doped Ga<sub>2</sub>(MoO<sub>4</sub>)<sub>3</sub> Phosphors[J]. Chinese Journal of Luminescence, 2011,32(11): 1143-1146
冯文林, 李铁, 陈志, 张盈, 曾超, 杨蕾. 掺铕钼酸钆荧光粉的制备与发光性能分析[J]. 发光学报, 2011,32(11): 1143-1146 DOI:
FENG Wen-lin, LI Tie, CHEN Zhi, ZHANG Yin, ZENG Cao, YANG Lei. Synthesis and Luminescent Properties of Eu<sup>3+</sup> Doped Ga<sub>2</sub>(MoO<sub>4</sub>)<sub>3</sub> Phosphors[J]. Chinese Journal of Luminescence, 2011,32(11): 1143-1146 DOI:
通过共沉淀法制备了红色荧光粉Gd
2-
x
Eu
x
(MoO
4
)
3
并采用X射线衍射(XRD)、扫描电子显微镜(SEM)和荧光光谱对所制备的样品进行结构表征分析
讨论了不同掺杂量下合成的荧光材料的发光性质。研究结果表明:所制备的Gd
2-
x
Eu
x
(MoO
4
)
3
红色荧光粉的三处激发峰分别位于394
465
534 nm。发射光谱中在589 nm和613 nm处有很强的发射峰
其中最强发射峰位于613 nm左右
与Eu
3+
的
5
D
0
7
F
2
跃迁对应。随着Eu
3+
掺杂量的增加
所合成的荧光粉的发光强度逐渐增强。在三组实验结果中
Gd
1.4
Eu
0.6
(MoO
4
)
3
(
x
=0.6)的发光强度最强。
Gd
2-
x
Eu
x
(MoO
4
)
3
red phosphors are synthesized by using co-precipitation method. X-ray diffraction (XRD)
scanning electron microscopy (SEM) and fluorescence spectrum are used to characterize the structure and luminescent property of the samples. The luminescent properties of Gd
2-
x
Eu
x
(MoO
4
)
3
with various concentration of Eu
3+
are investigated in detail. The results show that three dominant bands locate at 394
465
534 nm. The emission spectra exhibit the most intense emission at 589 nm and 613 nm
especially the later which is corresponding to the
5
D
0
7
F
2
transition of the Eu
3+
. With the increase of the concentration of Eu
3+
the luminescent intensity of the phosphors is gradually increased. When
x
=0.6 (
i.e.
Gd
1.4
Eu
0.6
-(MoO
4
)
3
)
the luminescent intensity of the red phosphor is the strongest.
Wang J J, Yin H B, Wang F, et al. Study on properties of Gd2(MoO4)3∶Eu3+ doped with Bi3+ and Y3+ [J]. Mater. Rev. (材料导报), 2008, 22 (z3):124-126 (in Chinese).[2] Zhang W P, Yin M. Preparation and properties of nanometric scale luminescent materials doped by rare earth [J]. Chin. J. Lumin. (发光学报), 2000, 21 (4):314-319 (in Chinese).[3] Zhang G Y, Zhao X X, Meng Q Y, et al. Preparation and properties of red emitting phosphor Gd2Mo3O9∶Eu3+ for white LEDs [J]. Chin. J. Lumin. (发光学报), 2007, 28 (1):57-61 (in Chinese).[4] Lei B F, Sha L, Liu Y L, et al. Synthesis of nano-sized Sr2SiO4∶Eu3+ phosphor by combustion method and its luminescence properties [J]. Chin. J. Lumin. (发光学报), 2011, 32 (6):535-541 (in Chinese).[5] Liu L, Yuan X M, Xie A, et al. Synthesis and Luminescent properties of Eu3+-activated novel borate-based red-emitting phosphors for white LED [J]. Chin. J. Lumin. (发光学报), 2011, 32 (7):686-692 (in Chinese).[6] Yang Y L, Li X M, Feng W L, et al. Synthesis and characteristic of CaMoO4∶Eu3+ red phosphor for W-LED by co-precipitation [J]. J. Inorg. Mater., 2011, 27 (10):276-280 (in Chinese).[7] Yang Y L, Li X M, Feng W L, et al. Effect of surfactants on morphology and luminescent properties of CaMoO4∶Eu3+ red phosphors [J]. J. Alloys Compd., 2011, 509 (3):845-848.[8] Wenst R C. CRC Handbook of Chemistry and Physics [M]. Roca Raton: CRC Press, 1989:F-187.[9] Wang Z L. Luminescence of (Li0.333Na0.334K0.333)Eu(MoO4)2 and its application in near UV InGaN-based light-emitting diode [J]. Chem. Phys. Lett., 2005, 46 (4-6):313-316.[10] Zhang G Y, Zhao X X, Meng Q Y, et al. Synthesis and characterization of Eu3+ doped -Gd2(MoO4)3 phosphor [J]. Chin. J. Lumin. (发光学报), 2006, 27 (5):724-728 (in Chinese).
0
浏览量
127
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构