浏览全部资源
扫码关注微信
1. 西安近代化学研究所, 陕西 西安 710065
2. 中国科学院长春光学精密机械与物理研究所,吉林 长春,130022
收稿日期:2011-08-16,
修回日期:2011-09-13,
网络出版日期:2011-11-22,
纸质出版日期:2011-11-22
移动端阅览
徐茂梁, 安忠维, 王歌扬, 周瑞, 肖奇, 李明涛, 李文连, 洪自若. 具有减少自猝灭效果的铱配合物掺杂型红色聚合物磷光器件[J]. 发光学报, 2011,32(11): 1181-1185
XU Mao-liang, AN Zhong-wei, WANG Ge-yang, ZHOU Rui, XIAO Qi, LI Ming-tao, LI Wen-lian, HONG Zi-ruo. Red Polymer Electrophosphorescent Devices Based on Iridium Complex with Reduced Self-quenching Effect[J]. Chinese Journal of Luminescence, 2011,32(11): 1181-1185
徐茂梁, 安忠维, 王歌扬, 周瑞, 肖奇, 李明涛, 李文连, 洪自若. 具有减少自猝灭效果的铱配合物掺杂型红色聚合物磷光器件[J]. 发光学报, 2011,32(11): 1181-1185 DOI:
XU Mao-liang, AN Zhong-wei, WANG Ge-yang, ZHOU Rui, XIAO Qi, LI Ming-tao, LI Wen-lian, HONG Zi-ruo. Red Polymer Electrophosphorescent Devices Based on Iridium Complex with Reduced Self-quenching Effect[J]. Chinese Journal of Luminescence, 2011,32(11): 1181-1185 DOI:
将双(2-(2'-苯并 噻吩基)-5-三氟甲基吡啶)乙酰丙酮合铱配合物 及电子传输材料PBD掺杂到基质材料PVK中
利用旋涂的方法制备聚合物磷光器件。铱配合物的掺杂质量分数分别为8%、10%、15%及18%
当掺杂质量分数为15%时获得了最大外量子效率4.5%
而同样结构的经典的红光材料(btp)
2
Ir(acac)的掺杂质量分数为4%时最大外量子效率为3.3%。可以看出
含三氟甲基的新铱配合物制备的聚合物器件具有明显的减少浓度猝灭效果
这可能由于三氟甲基基团改变了分子堆积状态
减少了分子间相互作用的结果。该聚合物器件最大发射峰位648 nm
色坐标为(0.71
0.29)
没有PVK的蓝光发射峰。
A highly efficient red-emitting phosphorescent polymer light-emitting diode (Ph-PLED) with a new iridium complex of bis(2-benzo thiophen-2-yl-5-trifluoromethyl-pyridinato-N
C
3
) iridium(Ⅲ) (acetylacetonate) using poly (n-vinylcarbazole) (PVK) as host material was demonstrated. The PLED offers a maximum external quantum efficiency of 4.5% with an emission peak of 648 nm. The CIE coordinates are (0.71
0.29) and independent from driving current density
indicating an efficient reduction of self-quenching effect at high doping concentrations.
Kido J, Okuyama K, Nagai K. White light-emitting organic electroluminescent devices using the poly (N-vinylcarbazole) emitter layer doped with three fluorescent dyes [J]. Appl. Phys. Lett., 1994, 64 (7):815-817.[2] Kido J, Shionoya H, Nagai K. Single-layer white light-emitting organic electroluminescent devices based on dye-dispersed poly(N-vinylcarbazole) [J]. Appl. Phys. Lett., 1995, 67 (16):2281-2283.[3] Luo K J, Jiang S P, Wang X, et al. Efficient green phosphorescent polymer light-emitting diodes based on cyclometalated iridium complex [J]. Chin. J. Lumin. (发光学报), 2011, 32 (4):368-373 (in English).[4] Yang X D, Lee C L, Westenhoff S, et al. Saturation, relaxation, and dissociation of excited triplet excitons in conjugated polymers [J]. Adv. Mater., 2009, 21 (8):916-919.[5] Kido J, Kohda M, Okuyama K, et al. Organic electroluminescent devices based on molecularly doped polymers [J]. Appl. Phys. Lett., 1992, 61 (7):761-763.[6] Wu C, Sturn J C, Register R A, et al. Efficient organic electroluminescent devices using single-layer doped polymer thin films with bipolar carrier transport abilities [J]. IEEE Trans. Electron. Dev., 1997, 44 (8):1269-1281.[7] Lee C L, Lee K B, Kim J J. Polymer phosphorescent light-emitting devices doped with tris(2-phenylpyridine) iridium as a triplet emitter [J]. Appl. Phys. Lett., 2000, 77 (150):2280-2282.[8] O'Brien D F, Giebler C, Fletcher R B, et al. Electrophosphoresence from a doped polymer light emitting diode [J]. Synth. Met., 2001, 116 (1-3):379-383.[9] Lamansky S, Kwong R C, Nugent M, et al. Molecularly doped polymer light emitting diodes utilizing phosphorescent Pt(II) and IR(Ⅲ) dopants [J]. Organic Electronics, 2001, 2 (1):53-62.[10] Zhang X J, Xu Y H, Shi H H. Synthesis and phosphorescence of a new greenish-blue light-emitting iridium(Ⅲ)bis(1-phenylpyridine)(1,2,4-triazole pyridine) [J]. Chin. J. Lumin. (发光学报), 2007, 28 (1):44-48 (in Chinese).[11] Zhu W, Mo Y, Yuan M, et al. Highly efficient electrophosphorescent devices based on conjugated polymers doped with iridium complexes [J]. Appl. Phys. Lett., 2002, 80 (12):2045-2047.[12] Gong X, Ostrowski J C, Bazan G C, et al. Red electrophosphorescence from polymer doped with iridium complex [J]. Appl. Phys. Lett., 2002, 81 (20):3711-3713.[13] Xie H Z, Liu M W, Wang O Y, et al. Reduction of self-quenching effect in organic electrophosphorescence emitting devices via the use of sterically hindered spacers in phosphorescence molecules [J]. Adv. Mater., 2001, 13 (16):1245-1248.[14] Wang Y, Herron N, Grushin V V, et al. Highly efficient electroluminescent materials based on fluorinated organometallic iridium compounds [J]. Appl. Phys. Lett., 2001, 79 (4):449-451.[15] Xu M L, Li M T, Hong Z R, et al. Highly efficient red electrophosphorescent device based on an new iridium complex with trifluoromethyl-substituted 2-benzo thiophen-2-yl-pyridine ligand [J]. Opt Mater., 2006, 28 (8-9):1025-1028.[16] Forrest S R, Bradley D D C, Thompson M E. Measuring the efficiency of organic light-emitting devices [J]. Adv. Mater., 2003, 15 (13):1043-1048.[17] Suzuki H. Orientational enhancement in the electroluminescence of ionic emissive dyes doped in poly(vinylcarbazole) [J]. Thin Solid Films, 2001, 393 (1-2):352-357.[18] Hill I G, Kahn A. Organic semiconductor heterointerfaces containing bathocuproine [J]. J. Appl. Phys., 1999, 86 (8):4515-4519.[19] Kijima Y, Asai N, Tamura S. A blue organic light emitting diode [J]. Jpn. J. Appl. Phys., Part 1, 1999, 38 (9A):5274-5277.[20] Chen F C, Yang Y, Thompson M E, et al. High-performance polymer light-emitting diodes doped with a red phosphorescent iridium complex [J]. Appl. Phys. Lett., 2002, 80 (13):2308-2310.
0
浏览量
81
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构