浏览全部资源
扫码关注微信
1. 中国科学院研究生院 北京,100049
2. 中国科学院 激发态物理重点实验室 长春光学精密机械与物理研究所,吉林 长春,130033
收稿日期:2011-08-09,
修回日期:2011-09-07,
网络出版日期:2011-11-22,
纸质出版日期:2011-11-22
移动端阅览
刘亚东, 苏子生, 庄陶钧, 初蓓, 李文连. F<sub>16</sub>CuPc作为阳极缓冲层对有机太阳能电池性能的显著改善[J]. 发光学报, 2011,32(11): 1176-1180
LIU Ya-dong, SU Zi-sheng, ZHUANG Tao-jun, CHU Bei, LI Wen-lian. Significant Enhanced Performance of Organic Solar Cells with F<sub>16</sub>CuPc as The Anode Buffer Layer[J]. Chinese Journal of Luminescence, 2011,32(11): 1176-1180
刘亚东, 苏子生, 庄陶钧, 初蓓, 李文连. F<sub>16</sub>CuPc作为阳极缓冲层对有机太阳能电池性能的显著改善[J]. 发光学报, 2011,32(11): 1176-1180 DOI:
LIU Ya-dong, SU Zi-sheng, ZHUANG Tao-jun, CHU Bei, LI Wen-lian. Significant Enhanced Performance of Organic Solar Cells with F<sub>16</sub>CuPc as The Anode Buffer Layer[J]. Chinese Journal of Luminescence, 2011,32(11): 1176-1180 DOI:
采用F
16
CuPc作为有机太阳能电池的阳极缓冲层可使器件的性能得到显著提高。F
16
CuPc的引入
一方面可以实现CuPc分子的定向生长
从而改善CuPc薄膜的结晶度
提高其空穴迁移率;另一方面在F
16
CuPc/CuPc界面处可形成偶极层
改善空穴的输出效率。以上两个作用有效提高了器件的载流子收集效率
降低了器件的串联电阻和光生载流子复合几率
从而提高了器件的短路电流和填充因子。同时
F
16
CuPc的引入使器件的内建电场增大
提高了器件的开路电压。
Significant enhanced performance of organic solar cells with F
16
CuPc as the anode buffer layer was demonstrated. On the one hand
the adopted F
16
CuPc anode buffer layer leads to the oriented growth of the CuPc molecules
resulting in the increased crystallinity and hence the hole mobility of the CuPc film. On the other hand
a dipole layer can be formed in the F
16
CuPc/CuPc interface
which can improve the hole extraction efficiency from CuPc to ITO. Owing to these tow effects
the charge carriers collection efficiency was raised
while the series resistance and the photogenerated charge carrier recombination probability were decreased. Consequently
the short-circuit current and the fill factor were increased. Meanwhile
the built-in potential of the devices was also increased by the introduction of F
16
CuPc
leading to an increased open-circuit voltage.
Tang C W. Two-layer organic photovoltaic cell [J]. Appl. Phys. Lett., 1986, 48 (2):183-185.[2] Hancox I, Sullivan P, Chauhan K V, et al. The effect of a MoOx hole-extracting layer on the performance of organic photovoltaic cells based on small molecule planar heterojunctions [J]. Org. Electron., 2010, 11 (12):2019-2025.[3] Han S, Shin W S, Seo M, et al. Improving performance of organic solar cells using amorphous tungsten oxides as an interfacial buffer layer on transparent anodes [J]. Org. Electron., 2009, 10 (5):791-797.[4] Hancox I, Rochford L A, Clare D, et al. Utilizing n-type vanadium oxide films as hole-extracting layers for small molecule organic photovoltaics [J]. Appl. Phys. Lett., 2011, 99 (1):013304-1-3.[5] Alem S, Bettignies R de, Nunzi J M, et al. Efficient polymer-based interpenetrated network photovoltaic cells [J]. Appl. Phys. Lett., 2004, 84 (12):2178-2180.[6] Wang H, Zhu F, Yang J, et al. Weak epitaxy growth affording high-mobility thin films of disk-like organic semiconductors [J]. Adv. Mater., 2007, 19 (16):2168-2171.[7] Jiang X, Dai J, Wang H, et al. Organic photovoltaic cells using hexadecafluorophthalocyaninatocopper (F16CuPc) as electron acceptor material [J]. Chem. Phys. Lett., 2007, 446 (4):329-332.[8] Zhenan B, Andrew J L, Janelle B. New air-stable n-channel organic thin film transistors [J]. J. Am. Chem. Soc., 1998, 120 (1):207-208.[9] Di C A, Yu G, Liu Y, et al. High-efficiency low operation voltage organic light-emitting diodes [J]. Appl. Phys. Lett., 2007, 90 (13):133508-1-3.[10] Dai J, Jiang X, Wang H, et al. Organic photovoltaic cell employing organic heterojunction as buffer layer [J]. Thin Solid Films, 2008, 516 (10):3320-3323.[11] Peumans P, Uchida S, Forrest S R. Efficient bulk heterojunction photovoltaic cells using smallmolecular-weight organic thin films [J]. Nature, 2003, 425 (6954):158-162.[12] Mao H Y, Bussolotti F, Qi D C, et al. Mechanism of the Fermi level pinning at organic donor-acceptor heterojunction interfaces [J]. Org. Electron., 2011, 12 (3):534-540.[13] Kinoshita Y, Takenaka R, Murata H. Independent control of open-circuit voltage of organic solar cells by changing film thickness of MoO3 buffer layer [J]. Appl. Phys. Lett., 2008, 92 (24):243309-1-3.[14] Rand B P, Xue J, Uchida S, et al. Mixed donor acceptor molecular heterojunctions for photovoltaic applications. I. Material properties [J]. J. Appl. Phys., 2005, 98 (12):124902-1-7.
0
浏览量
108
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构