浏览全部资源
扫码关注微信
1. 中国科学院研究生院 北京,100049
2. 中国科学院 激发态物理重点实验室 长春光学精密机械与物理研究所,吉林 长春,130033
收稿日期:2011-03-20,
修回日期:2011-06-16,
网络出版日期:2011-10-22,
纸质出版日期:2011-10-22
移动端阅览
廖亚琴, 甘至宏, 刘星元. DPVBi空穴阻挡层对OLED性能的优化[J]. 发光学报, 2011,32(10): 1041-1045
LIAO Ya-qin, GAN Zhi-hong, LIU Xing-yuan. Improvement of OLED Performance by Using DPVBi as Hole-blooking Layer[J]. Chinese Journal of Luminescence, 2011,32(10): 1041-1045
研究了宽带隙有机小分子材料DPVBi作为空穴阻挡层对OLED器件效率和亮度的优化作用。DPVBi的引入有效地改善了以PEDOT∶PSS做空穴注入层的OLED器件的空穴过剩问题。实验结果表明:通过优化DPVBi的厚度
插入30 nm厚的DPVBi空穴阻拦层可以有效地平衡OLED器件的电子和空穴浓度
降低器件的工作电压
优化器件的各项性能。该器件的效率和亮度分别是器件结构为ITO/PEDOT∶PSS/NPB/Alq
3
/LiF/Al参比器件的1.2倍和1.87倍。
High performance organic light emitting devices (OLEDs) should have a low operating voltage
high efficiency and relatively good stability. Inserting of a hole blocking layer (HBL) between hole transporting layer (HTL) and electron transporting layer (ETL) is one of the effective method to improve device performances. In this paper
a DPVBi HBL was incorporated in OLED between the PEDOT∶PSS hole injection layer (HIL) and Alq
3
ETL. Such a structure helps to reduce the hole-leakage of the cathode
which resulting an enhanced device performances. The optimized device with a thickness of 30 nm DPVBi HBL shows a signi-ficantly improved current efficiency (5.2 cd/A) and luminance (24 350 cd/m
2
)
which is 20% and 87% higher compared with those data of reference device with the structure of ITO/PEDOT∶PSS/NPB/Alq
3
/LiF/Al.
Benor A, Takizawa S Y. Energy barrier, charge carrier balance, and performance improvement in organic light-emitting diodes [J]. Appl. Phys. Lett., 2010, 96 (24):243310-1-3.[2] Chou H H, Cheng C H. A highly efficient universal bipolar host for blue, green, and red phosphorescent OLEDs [J]. Adv. Mat., 2010, 22 (22):2468-2471.[3] Tutis E, Berner D, Zuppiroli L. Internal electric field and charge distribution in multilayer organic light-emitting diodes [J]. J. Appl. Phys., 2003, 93 (8):4594-4602.[4] Chu T Y, Song O K. Hole mobility of N,N'-bis(naphthalen-1-yl)-N,N'-bis(phenyl) benzidine investigated by using space-charge-limited currents [J]. Appl. Phys. Lett., 2007, 90 (20):203512-1-3.[5] Naka S, Okada H, Onnagawa H, et al. Carrier transport properties of organic materials for EL device operation[J]. Synth. Met., 2000, 111 :331-333.[6] Tang C W. 2-layer organic photovoltaic cell [J]. Appl. Phys. Lett., 1986, 48 (2):183-185.[7] Kang S J, Park D S, Kim S Y, et al. Enhancing the electroluminescent properties of organic light-emitting devices using a thin NaCl layer [J]. Appl. Phys. Lett., 2002, 81 (14):2581-2583.[8] Jabbour G E, Kippelen B, Armstrong N R, et al. Aluminum based cathode structure for enhanced electron injection in electroluminescent organic devices [J]. Appl. Phys. Lett., 1998, 73 (15):2218-2218.[9] Hung L S, Tang C W, Mason M G. Enhanced electron injection in organic electroluminescence devices using an Al/LiF electrode [J]. Appl. Phys. Lett., 1997, 70 (2):152-154.[10] Divayana Y, Chen B J, Sun X W, et al. Organic light-emitting devices with a hole-blocking layer inserted between the hole-injection layer and hole-transporting layer [J]. Appl. Phys. Lett., 2006, 88 (8):083508-1-3.[11] Ben Khalifa M, Vaufrey D, Tardy J. Opposing influence of hole blocking layer and a doped transport layer on the performance of heterostructure OLEDs [J]. Organic Electronics, 2004, 5 (4):187-198.[12] Hsiao C C, Hsiao A E, Chen S A. Design of hole blocking layer with electron transport channels for high performance polymer light-emitting diode [J]. Adv. Mater., 2008, 20 (10):1982-1988.[13] Huang J S, Pfeiffer M, Werner A, et al. Low-voltage organic electroluminescent devices using pin structures [J]. Appl. Phys. Lett., 2002, 80 (1):139-141.[14] Cheng Cuiran, Chen Yuhuan, Qin Dashan, et al. Highly efficient blue phosphorescent organic light emitting devices with a SrF2 doped hole transporting layer [J]. Chin. J. Lumin.(发光学报), 2011, 32 (4):387-392 (in Chinese).[15] Tu Aiguo, Zhou Xiang. OLEDs with Au/MoO3 hole injection layer [J]. Chin. J. Lumin.(发光学报), 2010, 31 (2):157-161 (in Chinese).[16] Jang J, Ha J, Kim K. Organic light-emitting diode with polyaniline-poly(styrene sulfonate) as a hole injection layer [J]. Thin Solid Films, 2008, 516 (10):3152-3156.[17] Helander M G, Wang Z B, Greiner M T, et al. The effect of UV ozone treatment on poly(3,4-ethylenedioxythiophene)∶poly(styrenesulfonate) [J]. Appl. Phys. Lett., 2009, 95 (17):173302-1-3.[18] Li G, Shinar J. Combinatorial fabrication and studies of bright white organic light-emitting devices based on emission from rubrene-doped 4,4'-bis(2,2'-diphenylvinyl)-1,1'-biphenyl [J]. Appl. Phys. Lett., 2003, 83 (26):5359-5361.[19] Makinen A J, Hill I G, Shashidhar R. Hole injection barriers at polymer anode/small molecule interfaces [J]. Appl. Phys. Lett., 2001, 79 (5):557-559.
0
浏览量
268
下载量
3
CSCD
关联资源
相关文章
相关作者
相关机构