浏览全部资源
扫码关注微信
漳州职业技术学院 电子工程系,福建 漳州,363000
[ "戴树春(1965-), 女, 福建漳州人, 主要从事应用电子技术和半导体照明检测的研究。" ]
收稿日期:2009-11-02,
修回日期:2009-12-31,
网络出版日期:2010-11-22,
纸质出版日期:2010-11-22
移动端阅览
戴树春. 功率效应对功率LED热阻的影响[J]. 发光学报, 2010,31(6): 877-881
DAI Shu-chun. Influence of Power Effect on The Thermal Resistance of Power LED[J]. Chinese Journal of Luminescence, 2010,31(6): 877-881
分析比较了在不同输入功率条件下1WGaN基LED样品的热学特性
得出了有效热阻随加载功率的变化规律。基于瞬态热测试方法
讨论了结-环境热阻与输入功率之间的关系。加载电流为100~500mA的区域随着电功率增加
有效热阻明显降低;当电流增至500mA以上时
有效热阻减小幅度越来越小;而当加载电流为900~1650mA时
结-环境的热阻随着电功率的增加而缓慢升高。随着注入电功率的增加
在不同电流区域同一个样品的热阻变化趋势却是相反的
这个现象归因于串联电阻热耦合随输入功率的变化。该结果对分析功率型LED热特性具有一定参考价值。
We analyze the thermal characteristics of 1 W GaN-LED as function of input power. Based on the transient thermal measurement
the relationship of junction-ambient thermal resistance and input power is discussed. The thermal resistance and the thermal capacitance in the heat flow path can be captured by the diffe-rential structure function and cumulative structure function
offering reliable evidence for thermal management. The devices exhibit a decrease of effective thermal resistance from 14.3 K/W to 12.5 K/W when the input current increases from 100 mA to 500 mA at the heatsink temperature of 25 ℃. However the effective thermal resistance gradually decrease from 12.5 K/W to 12.3 K/W with the input current from 500 mA to 800 mA. On the other hand
when the input current increases from 900 mA to 1 650 mA
the change trend is completely opposite
while the device exhibits an increase of effective thermal resistance from 14.7 K/W to 15.4 K/W. With the same devices
the different trends of thermal resistance go with different current regions. All packaged LEDs can be simplified to the model composed of an ideal diode and a series resistance.
Jeong P, Lee C C. An electrical model with junction temperature for light-emitting diodes and the impact on conversion efficiency [J]. IEEE Electron Device Lett., 2005, 26 (5):308-310.[2] Sugiura L. Comparison of degradation caused by dislocation motion in compound semiconductor light-emitting devices [J]. Appl. Phys. Lett., 1997, 70 (10):1317-1-3.[3] Wang Jian, Huang Xian, Liu Li, et al. Effect of temperature and current on LED luminous efficiency [J]. Chin. J. Lumin.(发光学报), 2008, 29 (2):358-362 (in Chinese).[4] Fang Fubo, Wang Yaohao, Song Daihui, et al. Spectroscopic analysis of white LED attenuation [J]. Chin. J. Lumin. (发光学报), 2008, 29 (2):358-362 (in Chinese).[5] Skely V, Rencz M. Increasing the accuracy of thermal transient measurements [J]. IEEE Trans. Compon. Pack Techn., 2002, 25 (4):539-546.[6] Paasschens J C J, Harmsma S, Vander R. Toom dependence of thermal resistance on ambient and actual temperature [J]. IEEE BCTM, 2004, 5 (1):96-99.[7] Skely V. THERMODEL: a tool for compact dynamic thermal model generation [J]. Microelectron J., 1998, 29 (4-5):257-267.[8] Csendes A, Szkely V, Rencz M. An efficient thermal simulation tool for ICs, microsystem elements and MCMs: the S-THERMANAL [J]. Microelectron J., 1998, 29 (4-5):241-255.[9] Rencz M, Poppe A, Kollr E, et al. Increasing the accuracy of structure function based thermal material parameter measurements [J]. IEEE Transactions Components Pack. Techn., 2005, 28 (1):51-57.[10] Skely V, Bien T V. Fine structure of heat flow path in semiconductor devices: A measurement and identification method [J]. Solid State Electron., 1988, 31 (9):1363-1368.[11] Cheung S K, Cheung N W. Extraction of Schottky diode parameters from forward current-voltage characteristics [J]. Appl. Phys. Lett., 1986, 49 (2):85-87.
0
浏览量
117
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构