浏览全部资源
扫码关注微信
1. 吉林大学 物理学院,吉林 长春,130021
2. 中国科学院长春光学精密机械与物理研究所 激发态物理重点实验室,吉林 长春,130033
收稿日期:2010-06-28,
修回日期:2010-09-06,
网络出版日期:2010-11-22,
纸质出版日期:2010-11-22
移动端阅览
李炳辉, 姚斌, 李永峰, 邓蕊, 张振中, 刘卫卫, 单崇新, 张吉英, 申德振. 生长在p-GaAs衬底上的ZnO基异质结二极管电致发光[J]. 发光学报, 2010,31(6): 854-858
LI Bing-hui, YAO Bin, LI Yong-feng, DENG Rui, LIU Wei-wei, SHAN Chong-xin, ZHANG Ji-ying, SHEN De-zhen. U ltraviolet Electroluminescence from ZnO-based Heterojunction Light-emitting Diodes Fabricated on p-GaAs Substrate[J]. Chinese Journal of Luminescence, 2010,31(6): 854-858
李炳辉, 姚斌, 李永峰, 邓蕊, 张振中, 刘卫卫, 单崇新, 张吉英, 申德振. 生长在p-GaAs衬底上的ZnO基异质结二极管电致发光[J]. 发光学报, 2010,31(6): 854-858 DOI:
LI Bing-hui, YAO Bin, LI Yong-feng, DENG Rui, LIU Wei-wei, SHAN Chong-xin, ZHANG Ji-ying, SHEN De-zhen. U ltraviolet Electroluminescence from ZnO-based Heterojunction Light-emitting Diodes Fabricated on p-GaAs Substrate[J]. Chinese Journal of Luminescence, 2010,31(6): 854-858 DOI:
利用等离子体辅助分子束外延在p型砷化镓衬底上制备了ZnO异质结发光二极管。实验表明:GaAs与ZnO之间的氧化镁绝缘层能够有效改善器件光电性能
I-V
特性的研究表明该器件具有良好的整流特性
开启电压为3V
电致发光光谱由一个紫外发光峰和一个可见发光带构成
其来源分别为ZnO层中近带边缺陷以及深能级缺陷相关的辐射复合。
ZnO-based heterojunction light-emitting diodes have been fabricated on p-type GaAs substrate by plasma-assisted molecular beam expitaxy. An electron-blocking MgO layer between thin ZnO film and p-GaAs substrate plays a key role in improving performance of the diodes. Comparing with the n-ZnO/p-GaAs heterojunction
the ZnO/MgO/p-GaAs heterojunction shows a typical diode characteristic with a forward threshold voltage of 3 V. Electroluminescence measurement indicates that the ZnO/MgO/p-GaAs heterojunction has a visible emission band attributed to the defect-related recombination in the ZnO layer and an ultraviolet emission peak.
Tsukazaki A, Ohtomo A, Onuma T, et al. Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO [J]. Nat. Mater., 2005, 4 (1):42-46.[2] Ryu Y R, Lubguban J A, Lee T S, et al. Excitonic ultraviolet lasing in ZnO-based light emitting devices [J]. Appl. Phys. Lett., 2007, 90 (13):131115-1-3.[3] Li Y, Yao B, Deng R, et al. Ultraviolet photodiode based on p-Mg0.2Zn0.8O/n-ZnO heterojunction with wide response range [J]. J. Phys. D: Appl. Phys., 2009, 42 (10):105102-1-4.[4] Sun J, Lu Y, Liu Y, et al. Nitrogen-related recombination mechanisms in p-type ZnO films grown by plasma-assisted molecular beam epitaxy [J]. J. Appl. Phys., 2007, 102 (4):043522-1-6.[5] Look D, Reynolds D, Litton C, et al. Characterization of homoepitaxial p-type ZnO grown by molecular beam epitaxy [J]. Appl. Phys. Lett., 2002, 81 (10):1830-1832.[6] Xiu F, Yang Z, Mandalapu L, et al. p-type ZnO films with solid-source phosphorus doping by molecular-beam epitaxy [J]. Appl. Phys. Lett., 2006, 88 (5):052106-1-3.[7] Ryu Y, Lee T, Lubguban J, et al. Next generation of oxide photonic devices: ZnO-based ultraviolet light emitting diodes [J]. Appl. Phys. Lett., 2006, 88 (24):241108-1-3.[8] Mandalapu L, Xiu F, Yang Z, et al. p-type behavior from Sb-doped ZnO heterojunction photodiodes [J]. Appl. Phys. Lett., 2006, 88 (11):112108-1-3.[9] Mandalapu L, Yang Z, Xiu F, et al. Homojunction photodiodes based on Sb-doped p-type ZnO for ultraviolet detection [J]. Appl. Phys. Lett., 2006, 88 (9):092103-1-3.[10] Asil H, Gr Emre, inar K, et al. Electrochemical growth of n-ZnO onto the p-type GaN substrate: p-n heterojunction characteristics [J]. Appl. Phys. Lett., 2009, 94 (25):253501-1-3.[11] Yu Q, Xu B, Wu Q, et al. Optical properties of ZnO/GaN heterostructure and its near-ultraviolet light-emitting diode [J]. Appl. Phys. Lett., 2003, 83 (23):4713-4715.[12] Reddy N, Ahsanulhaq Q, Kim J, et al. Behavior of n-ZnO nanorods/p-Si heterojunction devices at higher temperatures [J]. Appl. Phys. Lett., 2008, 92 (4):043127-1-3.[13] Chen X, Ling C, Fung S, et al. Current transport studies of ZnO/p-Si heterostructures grown by plasma immersion ion implantation and deposition [J]. Appl. Phys. Lett., 2006, 88 (13):132104-1-3.[14] Ye J, Gu S, Zhu S, et al. Electroluminescent and transport mechanisms of n-ZnO/p-Si heterojunctions [J]. Appl. Phys. Lett., 2006, 88 (18):182112-1-3.[15] Long H, Fang, G, Huang, H, et al. Ultraviolet electroluminescence from ZnO/NiO-based heterojunction light-emitting diodes [J]. Appl. Phys. Lett., 2009, 95 (1):013509-1-3.[16] Deng R, Yao B, Li Y, et al. X-ray photoelectron spectroscopy measurement of n-ZnO/p-NiO heterostructure valence-band offset [J]. Appl. Phys. Lett., 2009, 94 (2):022108-1-3.[17] Zhang P, Liu X L, Zhang R, et al. Valence band offset of ZnO/GaAs heterojunction measured by X-ray photoelectron spectroscopy [J]. Appl. Phys. Lett., 2008, 92 (1):012104-1-3.[18] Zhu H, Shan C, Li B, et al. Ultraviolet electroluminescence from MgZnO-based heterojunction light-emitting diodes [J]. J. Phys. Chem. C, 2009, 113 (7):2980-2982.[19] Long H, Fang G, Huang H, et al. Ultraviolet electroluminescence from ZnO/NiO-based heterojunction light-emitting diodes [J]. Appl. Phys. Lett., 2009, 95 (1):013509-1-3.[20] Sun J, Zhao J, Liang H, et al. Realization of ultraviolet electroluminescence from ZnO homojunction with n-ZnO/p-ZnO ∶ As/GaAs structure [J]. Appl. Phys. Lett., 2007, 90 (12):121128-1-3.[21] Aoki T, Hatanaka Y, Look D, et al. ZnO diode fabricated by excimer-laser doping [J]. Appl. Phys. Lett., 2000, 76 (22):3257-3258.[22] Chen P, Ma X, Yang D. Ultraviolet electroluminescence from ZnO/p-Si heterojunctions [J]. J. Appl. Phys., 2007, 101 (5):053103-1-4.[23] Aranovich J, Golmayo D, Fahrenbruch A, et al. Photovoltaic properties of ZnO/CdTe heterojunctions prepared by spray pyrolysis [J]. J. Appl. Phys., 1980, 51 (8):4260-4268.[24] Yamashita J. Oxygen band in magnesium oxide [J]. Phys. Rev., 1958, 111 (3):733-735.[25] Sze S. Physics of Semiconductor Devices [M]. 2nd ed, New York: Wiley, 1981, Appendix H.850.
0
浏览量
549
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构