浏览全部资源
扫码关注微信
西南技术物理研究所,四川 成都,610041
收稿日期:2009-11-30,
修回日期:2010-01-11,
网络出版日期:2010-11-22,
纸质出版日期:2010-11-22
移动端阅览
刘全喜, 钟鸣. LDA侧面泵浦薄片激光器的泵浦光和温度分布[J]. 发光学报, 2010,31(6): 888-893
LIU Quan-xi, ZHONG Ming. Study of the Pump and Temperature Distribution in Thin Disk Laser Side-pumped by LDA[J]. Chinese Journal of Luminescence, 2010,31(6): 888-893
建立了激光二极管阵列(LDA)环绕侧面泵浦复合薄片激光器的数值模型
LDA的快轴垂直于薄片表面并被压缩。依据LDA的输出光束特性
考虑到介质与空气的对流热交换和材料热导率的温度相关性
根据经典热传导方程
运用有限单元法
得出了薄片内的泵浦光和温度分布。分析了LDA个数、泵浦距离、吸收系数和光束发散角对薄片内泵浦光分布和吸收效率的影响规律
讨论了温度与泵浦功率、换热系数、冷却液温度和时间的变化规律
所得的有关规律与相关实验相符合。计算结果可为LDA泵浦固体激光器的结构优化设计和实验研究提供理论参考。
A numerical model of the thin composite disk side-pumped by ring laser-diode arrays (LDA) is set up. LDA fast axis is upright to disk face and is compressed. Under considering the influence of temperature correlation of the thermal conductivity of the material and heat transfer coefficient between air and medium
based on the thermal conduction equations
the pump distribution and the transient distributions of temperature in the thin disk are calculated by a finite element analysis method. The influence disciplinarian of the number of LDA
the pump distance
the light divergence angle and the absorption coefficient of thin disk on pump distribution and absorption efficiency of thin disk are analyzed. The influence disciplinarian of the pump power
heat transfer coefficient
cooling fluid temperature and time on transient distributions of temperature in the thin disk are discussed. The theoretical results accord with interrelated experiment and provide theoretical reference for the design of solid laser pumped by LDA and experimental analysis.
David F W. A brief history of high-power semiconductor lasers [J]. IEEE Sel. Top. Quant., 2000, 6 (6):1470-1477.[2] Payne S A, Bibeau C, Beach R J, et al. Diode-pumped solid-state lasers for inertial fusion energy [J]. J. Fusion Energy, 1998, 17 (3):213-217.[3] Liu Zhuping, Hu Lili, Dai Shixun, et al. Laser properties of Er3+ , Yb3+ co-doped erbium phosphate glass pumped by laser diode [J]. Chin. J. Lumin.(发光学报), 2002, 23 (3):238-242 (in Chinese).[4] Vetrovec J. Active mirror amplifier for high-average power [J]. SPIE, 2001, 4270 :45-55.[5] Zhang Shenjin, Zhou Shouhuan, Tang Xiaojun, et al. Pump distribution in gain medium of laser-diode side-pumped disk laser [J]. Infrared and Laser Engineering (红外与激光工程), 2007, 36 (4):505-508 (in Chinese).[6] Pang Kai, Han Junting, Li Qiang, et al. Pump distribution in LD side-pumped disk laser [J]. High Power Laser and Particle Beams (强激光与粒子束), 2008, 20 (8):1243-1248 (in Chinese).[7] Dascalu T, Pavel N, Tair T. 90 W continuous-wave diode edge-pumped microchip composite Yb ∶ Y3Al5O12 laser [J]. Appl. Phys. Lett., 2003, 83 (20):4086-4088.[8] Vetrovec J, Shah T, Endo T. Progress in the development of solid-state disk laser [J]. SPIE, 2004, 5332 :235-243.[9] Wang Hailin, Huang Weiling, Wang Ying. A simple calculation method of diode pump light distribution in the YAG rod laser [J]. Appl. Laser (应用激光), 1999, 19 (3):123-125 (in Chinese).[10] Liu Quanxi, Zhong Ming, Jiang Dong, et al. Finite element analysis of damage threshold of semiconductor irradiated by multiple laser [J]. Laser & Infrared (激光与红外), 2006, 36 (8):670-674 (in Chinese).[11] Wang Xucheng, Shao Min. The Basic Principles of Finite Element Method and Numerical Methods [M]. Beijing: Tsinghua University Press, 1997.[12] Qi Wenzong, Huang Wei, Zhang Bin, et al. Finite element analysis of thermal distortion of infrared CW laser reflectors[J]. High Power Laser and Particle Beams (强激光与粒子束), 2004, 16 (8):953-956 (in Chinese).[13] Koechner W. Solid-state Laser Engineering [M]. Berlin: Springer, 1996.[14] Brown D C. Nonlinear thermal distortion in YAG rod amplifiers [J]. IEEE J. Quantum Electron., 1998, 34 (12):2383-2392.
0
浏览量
194
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构