浏览全部资源
扫码关注微信
北京大学 物理学院 北京,100871
收稿日期:2010-05-24,
修回日期:2010-07-20,
网络出版日期:2010-11-22,
纸质出版日期:2010-11-22
移动端阅览
邢兵, 曹文彧, 杜为民. 不同In含量InGaN/GaN量子阱材料的变温PL谱[J]. 发光学报, 2010,31(6): 864-869
XING Bing, CAO Wen-yu, DU Wei-min. Temperature-dependent PL of InGaN/GaN Multiple Quantum Wells with Variable Content of In[J]. Chinese Journal of Luminescence, 2010,31(6): 864-869
通过对不同In含量的InGaN/GaN量子阱材料的变温光致发光(PL)谱进行实验分析
得出样品激活能和PL谱峰值能量随温度变化的S形曲线中拐点温度与In含量的关系。说明对于我们的样品
这种S形曲线并不是来源于量子限制Stark效应(QCSE)
而是与量子阱中In团簇有关。对比结果表明
含In量越多的材料其局域的能量越大
由热扰动脱离局域所需要的温度越高。
Temperature-dependent photoluminescence (PL) of InGaN/GaN multiple quantum wells (MQWs) is studied. Three samples have different percentage composition of In: 10%
14% and 17%. With increasing temperature
we can observe "S-shaped" behavior of the peak energy for all three samples. Because the second temperature turn of the "S-shaped" curves are different for each samples
and the blueshift energy of 10 meV in our samples is less than the energy shift result from QCSE
the S-shape is unrelated with QCSE. By using multi-channel Arrhenius plot formula
the samples' activation energies are calculated
which stand for the level of localized In-cluster. And it is found that both the activation energies and the second temperature turn of the "S-shaped" curves increase with increasing the content of indium for three samples. This phenomenon can be demonstrated by the reason that the sample which containing much In has lager activation energy
the photo-carriers need much thermal energy to get out of the local potential minima induced by In-cluster. These results further illustrate that the emission of InGaN/GaN multiple quantum wells is due to the radiative recombination of excitons localized in potential minima induced by In-cluster.
Nakamura S, Senoh M, Iwasa N, et al. Superbright green InGaN single quantum well structure light-emitting diodes [J]. Jpn. J. Appl. Phys. B, 1994, 34 (10):L1332-L1335.[2] Chichibu S, Azuhata T, Sota T, et al. Spontaneous emission of localized excitons in InGaN single and multiquantum well structures [J]. Appl. Phys. Lett., 1996, 69 (27):4187-4189.[3] Chichibu S F, Azuhata T, Sota T, et al. Localized quantum well excitons in InGaN single-quantum-well amber light-emitting diodes [J]. Appl. Phys. Lett., 2001, 79 (3):341-343.[4] Zheng Dayu. Characterization and analysis on optics character of semiconductor luminescence material . Yantai: Yantai University, 2005.[5] Son J H, Lee J L. Strain engineering for the solution of efficiency droop in InGaN/GaN light-emitting diodes [J]. Optics Express, 2010, 18 (6):5466-5469.[6] Im J S, Kollmer H, Off J, et al. Reduction of oscillator strength due to piezoelectric fields in GaN/AlGaN quantum wells [J]. Phys. Rev. B, 1997, 57 (16):9435-9438.[7] Cheong M G, Liu C, Choi H W, et al. Study of the origin of luminescence in high indium composition InGaN/GaN quantum wells [J]. J. Appl. Phys., 2003, 93 (8):4691-4695.[8] Morel A, Lefebvre P, Kalliakos S, et al. Donor-acceptor-like behavior of electron-hole pair recombinations in low-dimensional GaInN/GaN systems [J]. Phys. Rev. B, 2003, 68 (4):045331-1-7.[9] ODonnell K P, Martin R W, Middleton P G. Origin of luminescence from InGaN diodes [J]. Phys. Rev. Lett., 1999, 82 (1):237-240.[10] Humphreys C J. Does In form In-rich clusters in InGaN quantum wells? [J]. Philosophical Magazine, 2007, 87 (13):1971-1982.[11] Weber S, Limmer W, Thonke K, et al. Thermal carrier emission from a semiconductor quantum well [J]. Phys. Rev. B, 1995, 52 (20):14739-14742.[12] Narukawa Y, Kawakami Y, Fujita S, et al. Dimensionality of excitons in laser-diode structures composed of InxGa1-xN multiple quantum wells [J]. Phys. Rev. B, 1999, 59 (15):10283-10288.[13] Bimberg D, Sondergeld M. Thermal dissociation of excitons bounds to neutral acceptors in high-purity GaAs [J]. Phys. Rev. B, 1971, 4 (10):3451-3455.[14] Nakamura S. The blue laser diode: GaN based light emitters and lasers [J]. Mater. Sci. Eng. B, 1997, 50 (20):272-279.[15] Cao X A, LeBoeuf S F, Rowland L B. Temperature-dependent emission intensity and energy shift in InGaN/GaN multiple-quantum-well light-emitting diodes [J]. Appl. Phys. Lett., 2003, 82 (21):3614-3616.[16] Hurst P, Dawson P, Levetas S A. Temperature dependent optical properties of InGaN/GaN quantum well structures [J]. Phys. Stat. Sol. (b), 2001, 228 (1):137-140.[17] Jeong Y H. A comparative study of the internal quantum efficiency for the green MQWs grown on sapphire and FS-GaN substrates [J]. Phys. Stat. Sol. (c), 2007, 4 (1):187-191.[18] Cho Y H, Gainer G H, Fischer A J, et al. S-shaped temperature dependent emission shift and carrier dynamics in InGaN/GaN multiple quantum wells [J]. Appl. Phys. Lett., 1998, 73 (10):1370-1372.[19] Maruska H P, Tietjen J J. The preparation and properties of vapor-deposited single crystalline GaN [J]. Appl. Phys. Lett., 1969, l5 (1):327-339.[20] Wu J, Walukiewicz W, Yu K M, et al. Unusual properties of the fundamental band gap of InN [J]. Appl. Phys. Lett., 2002, 80 (21):3967-3969.
0
浏览量
99
下载量
3
CSCD
关联资源
相关文章
相关作者
相关机构