浏览全部资源
扫码关注微信
1. 北京交通大学光电子技术研究所 教育部发光与光学信息重点实验室 北京,100044
2. 中国科学院 化学所生命分析化学实验室 北京,100190
收稿日期:2009-11-03,
修回日期:1900-01-02,
网络出版日期:2010-06-30,
纸质出版日期:2010-06-30
移动端阅览
彭洪尚, 黄世华, 李小花. 基于点击化学的铕配合物纳米颗粒对Cu(I)离子的检测[J]. 发光学报, 2010,31(3):411-415.
PENG Hong-shang, HUANG Shi-hua, LI Xiao-hua. Cu(Ⅰ) Ion Detection with Europium (Ⅲ) Chelate Nanoparticles Based on Click Chemistry[J]. Chinese journal of luminescence, 2010, 31(3): 411-415.
制备了Eu (Ⅲ)配合物纳米颗粒并对其进行表面修饰以用于Cu(I)离子的检测。所采用的探测机制是源于Cu(I)离子催化的末端炔基和叠氮基团之间的1
3极性环加成。通过该反应
在Eu
3+
配合物纳米颗粒(给体)和一种荧光染料分子(受体)之间建立了共振能量传递关系。因为点击反应的速度正比于Cu(I)离子的浓度
因此通过监测染料分子荧光强度的变化即可检测出Cu(I)离子的浓度。基于共振能量传递机制和点击反应的敏感性
浓度为微摩尔量级的Cu(I)离子可以被探测到。
Europium (Ⅲ) chelate nanoparticles (NPs) were prepared and surface functionalized to detect Cu ( Ⅰ ) ions. The detection mechanism is based upon 1
3 dipolar cycloaddition of alkynyl groups to azido groups being able to be catalyzed by Cu( Ⅰ )
through which a fluorescent resonance energy transfer (FRET) system is constructed between NP and an acceptor fluorescent dye. By monitoring the fluorescence of the acceptor dye
the concentration of Cu ( Ⅰ ) ions was reported since the speed of click reaction is proportional to its concentration. Owing to the smart detecting scheme
Cu( Ⅰ ) ions (in micromolar concentrations) can be detected.
. Rae T D, Schmidt P J, Pufahl R A, et al. Undetectable free intracellular copper: the requirement of a copper chaperone for superoxide dismutase [J]. Science, 1999, 284 (5440):805-808.
. Yang L, McRae R, Henary M M, et al. Imaging of the intracellular topography of copper with a fluorescent sensor and by synchrotron X-ray fluorescence microscopy [J]. Proc. Natl. Acad. Sci. U.S.A. 2005, 102 (23):11179-11184.
. Zeng L, Miller E W, Pralle A, et al. A selective turn-on fluorescent sensor for imaging copper in living cells [J]. J. Am. Chem. Soc., 2006, 128 (1):10-11.
. Viguier R F H, Hulme A N. A sensitized europium complex generated by micromolar concentrations of copper( Ⅰ ):Toward the detection of copper( Ⅰ ) in biology [J]. J. Am. Chem. Soc., 2006, 128 (35):11370-11371.
. Rostovtsev V V, Green L G, Fokin V V, et al. A stepwise huisgen cycloaddition process: copper( Ⅰ )-catalyzed regioselective ligation of azides and terminal alkynes [J]. Angew. Chem. Int. Ed., 2002, 41 (14):2596-2599.
. Sammes P G, Yahioglu G. Modern bioassays using metal chelate as luminescnet probes [J]. Nat. Prod. Rep., 1996, 13 (1):1-28.
. Beeby A, Clarkson I M, Dickins R S, et al. The effect of X-Hoscillators on luminescence quenching in lanthanide complexes [J]. J. Chem. Soc. Perkin. Trans., 1999, 2 :493-503.
. Sarka L, Burai L, Brucher E. The rates of the exchange reactions between ' (2-) and the endogenous ions Cu2+ and Zn2+: a kinetic model for the prediction of the in vivo stability of (2-), used as a contrast agent in magnetic resonance imaging [J]. Chem-Eur. J., 2000, 6 (4):719-724.
. Liu S, Edwards D S. Bifunctional chelators for therapeutic lanthanide radiopharmaceuticals [J]. Bioconjugate Chem., 2001, 12 (1):7-34.
. Peng Hongshang, Wu Changfeng, Huang Shihua, et al. Preparation of small-sized luminescent Eu3+ chelate nanoparticles [J]. Chin. J. Lumin. (发光学报) , 2006, 27 (2):810-816 (in Chinese).
. Peng H S, Stich M I J, Yu J B, et al. Luminescent europium(Ⅲ) nanoparticles for sensing and Imaging of temperature in the physiological range [J]. Adv. Mater., 2010, 22 (6):716-719.
0
浏览量
105
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构