浏览全部资源
扫码关注微信
内蒙古大学 物理科学与技术学院, 内蒙古 呼和浩特 010021
收稿日期:2009-09-22,
修回日期:2010-01-27,
网络出版日期:2010-08-27,
纸质出版日期:2010-08-27
移动端阅览
杨 明, 宫 箭, 李贺年, 李 硕. Ⅱ - Ⅵ族稀磁半导体多层结构中的自旋极化隧穿[J]. 发光学报, 2010,31(4): 515-520
YANG Ming, GONG Jian, LI He-nian, LI Shuo. Spin-polarized Tunnel in Ⅱ-Ⅵ Group Diluted Magnetic Semiconductors with a Multilayer Structures[J]. 发光学报, 2010,31(4): 515-520
采用转移矩阵法和Airy函数
研究了ZnSe/ZnMnSe/ZnSe/ZnBeSe/ZnSe/ZnBeSe/ZnSe异质结构的自旋极化输运。在外加偏压和磁场对电子透射系数和自旋极化率的影响方面
所得到的结论显现出复杂而有趣的特性。 磁场对自旋向上和向下电子隧穿的影响是不同的:对于自旋向上情况
出现双共振向单共振转换现象。
Spintronics as a fast-developing interdisciplinary field
many novel devices
such as spin-FET and spin-LED
have been proposed. However
spin injection from ferromagnet to semiconductor has a low efficiency. In order to overcome this obstacle
diluted magnetic semiconductors (DMSs) have been proposed to realize the spin injection with high efficiency. In this paper
the spin-polarized tunnel through the ZnSe/ZnMnSe/ZnSe/ZnBeSe/ZnSe/ZnBeSe/ZnSe heterostructures is investigated by use of the transfer matrix and the linear combination of Airy functions. The bias and magnetic fields are both applied along the growth direction. The transmission coefficients as functions of the electron longitudinal energy are calculated
and some resonant peaks are observed. The transmission peaks for both spin-up and spin-down electrons move towards lower energy region with the increase of the applied voltage
which indicates that the bias can enhance the tunneling of electrons. For the spin-up case
the doublet resonance turn to singlet resonance with the increase of the magnetic field. However
the height of transmission peaks varies slightly with the magnetic field for the spin-down case. In our opinion
the reason that electrons with different spin have distinct transmission properties can be attributed to the fact that electrons are supposed by a spin-dependent potential in the DMS layer. Furthermore
we also calculate the spin polarization rate. It can be found that the spin polarization rate oscillates rapidly with the electron longitudinal energy in lower energy region
while converges to 0% in higher energy region. The curves of the rate shift towards lower energy region with the increase of the bias are as same as the transmission coefficient curves. Therefore
the spin-flip of electrons with specific energy can be realized by tuning the bias. External magnetic fields generally lift the spin polarization rate. It can be concluded that our heterostructure can be used as a spin-filter.
Gong Jian, Yang Fuhua, Feng Songlin. Coherent tunneling in coupled quantum wells under a uniform magnetic field
. Chin. Phys. Lett., 2007, 24 (8):2383-2386.
Saffarzadeh A, Bahar M, Banihasan M. Spin-dependent resonant tunneling in ZnSe/ZnMnSe heterostructures
. Physica E, 2005, 27 (4):462-468.
Zhai F, Guo Y, Gu B L. Coupling effects of layers on spin transport in ZnSe/Zn1-xMn</em>xSe heterostructures
. Eur. Phys. J. B, 2001, 23 (3):405-411.
Slobodskyy A, Gould C, Slobodskyy T, et al. Resonant tunneling diode with spin polarized injector
. Appl. Phys. Lett., 2007, 90 (12):122109-1-3.
Zhu H J, Ramsteiner M, Kostial H, et al. Room-temperature spin injection from Fe into GaAs
. Phys. Rev. Lett., 2001, 87 (1):016601-1-3.
Awschalom D D, Kikkawa J M. Electron spin and optical coherence in semiconductors
. Phys. Today, 1999, 52 (6):33-38.
Ohno Y, Young D K, Beschoten B, et al. Electrical spin injection in a ferromagnetic semiconductor heterostructure
. Nature, 1999, 402 (6763):790-792.
Yuasa S, Fukushima A, Kubota H, et al. Giant tunneling magnetoresistance up to 410% at room temperature in fully epitaxial Co/MgO/Co magnetic tunnel junctions with bcc Co(011) electrodes
. Appl. Phys. Lett., 2006, 89 (4):042505-1-3.
Zhang X D, Li B Z, Sun G, et al. Spin-polarized tunneling and magnetoresistance in ferromagnet/insulator (semiconductor) single and double tunnel junctions subjected to an electric field
. Phys. Rev. B, 1997, 56 (9):5484-5488.
Fiederling R, Kleim M, Reuscher G, et al. Injection and detection of a spin-polarized current in a light-emitting diode
. Nature, 1999, 402 (6763):787-789.
Ertler C, Fabian J. Resonant tunneling magnetoresistance in coupled quantum wells
. Appl. Phys. Lett., 2006, 89 (24):242101-1-3.
Stanley J, Pattinson N, Lambert C, et al. Rashba spin-splitting in narrow gap Ⅲ-Ⅴ semiconductor quantum wells
. Physica E, 2004, 20 (3-4):433-435.
Schmidt G, Fertrand D, Molenkamp L W, et al. Fundamental obstacle for electrical spin injection from a ferromagnetic metal into a diffusive semiconductor
. Phys. Rev. B, 2000, 62 (8):R4790-R4793.
Saffarzadeh A. The effects of Mn concentration on spin-polarized transport through ZnSe/ZnMnSe/ZnSe heterostructures
. Solid State Communications, 2006, 137 (9):463-468.
Gaj J A. In Semiconductors and Semimetals
. Boston: Academic Press, 1988, 275.
Dai N, Ram-Moham L R, Luo H, et al. Observation of above-barrier transitions in superlattices with small magnetically induced band offsets
. Phys. Rev. B, 1994, 50 (24):18153-18166.
Allen S, Richardson S. Improved airy function formalism for study of resonant tunneling in multibarrier semiconductor heterostructures
. J. Appl. Phys., 1996, 79 (2):886-894.
Zhu Zuoming, Li Guohua, Zhang Wang, et al. Temperature-induced turnover of the well and barrier layers in ZnSe/Zn0.84Mn0.16Se superlattices
. Phys. Rev. B, 1999, 60 (4):2691-2696.
Kim M, Kim C S, Lee S, et al. Band offset determination in ZnSe-based heterostructures involving ZnBeSe
. J. Crystal Growth, 2000, 214/215 :325-329.
Anderson R L. Germanium gallium arsenide heterojunctions
. IBM Res. Dev., 1960, 4 (3):283-287.
Liu Xinyu, Furdyna J K. Optical dispersion of ternary Ⅱ-Ⅵ semiconductor alloys
. J. Appl. Phys., 2004, 95 (12):7754-7764.
0
浏览量
190
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构