浏览全部资源
扫码关注微信
1. 重庆理工大学 光电信息学院 重庆,400054
2. 淮阴工学院 计算科学系,江苏 淮安,223001
收稿日期:2009-07-11,
修回日期:1900-01-02,
网络出版日期:2010-06-30,
纸质出版日期:2010-06-30
移动端阅览
王必本, 党 纯. a-C ∶ N ∶ H纳米尖端荧光产生的机理[J]. 发光学报, 2010,31(3):400-404.
WANG Bi-ben, DANG Chun. Mechanism of Photoluminescence from a-C ∶ N ∶ H Nanotips[J]. Chinese journal of luminescence, 2010, 31(3): 400-404.
用CH
4
H
2
和NH
3
为反应气体
利用等离子体增强热丝化学气相沉积在沉积有碳膜的Si衬底上制备了a-C ∶ N ∶ H纳米尖端
并用扫描电子显微镜和微区Raman光谱仪对碳膜和纳米尖端进行了表征。结果表明:Raman谱中含有与碳和氮相关的峰
且纳米尖端的Raman谱比碳膜的Raman谱有很强的荧光背景。Raman谱中的峰说明沉积的碳膜和纳米尖端是a-C ∶ N ∶ H薄膜和a-C ∶ N ∶ H尖端。a-C ∶ N ∶ H纳米尖端的Raman谱中强荧光背景的产生表明其在激发光源照射的过程中发射了强荧光
对a-C ∶ N ∶ H纳米尖端产生强荧光的机理进行了探讨。
a-C ∶ N ∶ H nanotips were fabricated on the Si substrate deposited with carbon film by plasma-enhanced chemical vapor deposition using methane
hydrogen and ammonia as the reaction gases. The carbon film and the nanotips were characterized by scanning electron microscopy and micro-Raman spectroscopy and the results indicated that the Raman spectra have the peaks related to carbon and nitrogen and the photoluminescence background in the Raman spectrum of the carbon nanotips is stronger than that of the carbon film. The peaks in the Raman spectra illustrates that the deposited carbon film and the nanotips are a-C ∶ N ∶ H film and a-C ∶ N ∶ H nanotips
respectively. The strong photoluminescence background in the Raman spectrum of the a-C ∶ N ∶ H nanotips indicates that the a-C ∶ N ∶ H nanotips produce the strong photoluminescence when the a-C ∶ N ∶ H nanotips are irradiated by the excitation of 514.5 nm Ar laser. The mechanism which the a-C ∶ N ∶ H nanotips produce strong photoluminescence was analyzed.
. Liu S P, Zhou F, Jin A Z, et al. Fabrication of graphite nano-structures [J]. Acta Physica Sinica (物理学报), 2005, 54 (9):4251-4255 (in Chinese).
. Yang W, Wang R Z, Yan H. Strain-induced Raman-mode shift in single-wall carbon nanotubes: Calculation of force constants from molecular-dynamics simulations [J]. Phys. Rev. B, 2008, 77 (19):195440-1-5.
. Wang B B, Zhang B, Zheng K, et al. Study on the growth of aligned carbon nanotubes controlled by ion bombardment [J]. Acta Phys. Sinica (物理学报), 2004, 53 (4):1255-1259 (in Chinese).
. Dang C, Wang B B, Wang F Y. Study on effect of oxygen adsorption on characteristics of field electron emission from aligned carbon nanotubes grown by plasma-enhanced hot filament chemical vapor deposition [J]. Vacuum, 2009, 83 (12):1414-1418.
. Jang J, Chung S J, Kim H S, et al. Self-organized carbon nanotips [J]. Appl. Phys. Lett., 2001, 79 (11):1682-1684.
. Ostrikov K. Colloquium: Reactive plasmas as a versatile nanofabrication tool [J]. Rev. Mod. Phys., 2005, 77 (2):489-511.
. Wang B B, Ostrikov K. Tailoring carbon nanotips in the plasma-assisted chemical vapor deposition: Effect of the process parameters [J]. J. Appl. Phys., 2009, 105 (8):083303-1-9.
. Huang C J, Chih Y K, Hwang J, et al. Field emission from amorphous-carbon nanotips on copper [J]. J. Appl. Phys., 2003, 94 (10):6796-6799.
. Tsakadze Z L, Levchenko I, Ostrikov K, et al. Plasma-assisted self-organized growth of uniform carbon nanocone arrays [J]. Carbon, 2007, 45 (10):2022-2030.
. Casiraghi C, Piazza F, Ferrari A C, et al. Bonding in hydrogen diamond-like carbon by Raman spectroscopy [J]. Diam. Relat. Mater., 2005, 14 (3-7):1098-1102.
. Dang C, Wang B B. Effects of etchant gas on the formation of carbon nanotip arrays grown by plasma-enhanced hot filament chemical vapor deposition [J]. Thin Solid Films, 2006, 514 (1-2):76-80.
. Zhang S L, Wang X, Ho K S, et al. Raman spectra in broad frequency region of p-type porous silicon [J]. J. Appl. Phys., 1994, 76 (5):3016-3019.
. Vlasov I I, Ralchenko V G, Goovaerts E, et al. Bulk and surface-enhanced Raman spectroscopy of nitrogen-doped ultrananocrystalline diamond films [J]. Phys. Stat. Sol. (a), 2006, 203 (12):3028-3035.
. Mutsukura N, Akiita K. Photoluminescence and infra-red absorption of hydrogen amorphous CN<em>x films [J]. Diam. Relat. Mater., 2000, 9 (3-6):761-764.
. Mutsukura N, Aktia K. Deposition of hydrogenated amorphous CN<em>x film in CH4/N2 RF discharge [J]. Diam. Relat. Mater., 1999, 8 (8-9):1720-1723.
. Chakrabarti K, Baus M, Chaudhuri S, et al. Photoluminescence studies of DC plasma CVD grown a-C ∶ H ∶ M films [J]. Mater. Chem. Phys., 1999, 59 (1):69-74.
. Koós M, Veres M, Füle M, et al. Ultraviolet photoluminescence and its relation to atomic bonding properties of hydrogenated amorphous carbon [J]. Diam. Relat. Mater., 2002, 11 (1):53-58.
. Rodil S E, Muhl S, Maca S, et al. Optical gap in carbon nitride films [J]. Thin Solid Films, 2003, 433 (1-2):119-125.
. Casiraghi C, Ferrari A C, Robertson J. Raman spectroscopy of hydrogenated amorphous carbons [J]. Phys. Rev. B, 2005, 72 (8):085401-1-14.
. Konchits A A, Valakh M Y, Shanina B D, et al. Effects of ion implantation on electron centers in hydrogenated amorphous carbon films [J]. J. Appl. Phys., 2003, 93 (10):5905-5910.
. Silva S R P, Robertson J, Amaratunga G A J, et al. Nitrogen modification of hydrogenated amorphous carbon films [J]. J. Appl. Phys., 1997, 81 (6):2626-2634.
. Fanchini F, Ray S C, Tagliaferro A. photoluminescence investigation of carbon nitride-based films deposited by reactive sputtering [J]. Diam. Relat. Mater., 2003, 12 (3-7):1084-1087.
. Anguita J V, Silva S R P, Yong W. Photoluminescence from polymer-like hydrogenated and nitrogenated amorphous carbon films [J]. J. Appl. Phys., 2000, 88 (9):5175-5179.
. Ostrikov K, Long J D, Rutkevych P P, et al. Synthesis of functional nanoassemblies in reactive plasmas [J]. Vacuum, 2006, 80 (11-12):1126-1131.
. Henley S J, Carrey J D, Silva S R P. Room temperature photoluminescence from nanostructured amorphous carbon [J]. Appl. Phys. Lett., 2004, 85 (25):6236-6238.
. Füle M, Budai J, Tóth S, et al. Size of spatial confinement at luminescence centers determined from resonant excitation bands of a-C ∶ H photoluminescence [J]. J. Non-Cryst. Solids, 2006, 352 (9-20):1340-1343.
0
浏览量
91
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构