浏览全部资源
扫码关注微信
中山大学 光电材料与技术国家重点实验室,广东 广州,510275
收稿日期:2009-08-30,
修回日期:1900-01-02,
网络出版日期:2010-04-30,
纸质出版日期:2010-04-30
移动端阅览
李 爽, 周 翔. MoO3阳极缓冲层对有机太阳电池性能的影响[J]. 发光学报, 2010,31(2):291-295.
LI Shuang, ZHOU Xiang. Effects of Molybdenum Oxide Anode Buffer Layer on Performance of Organic Solar Cells[J]. Chinese journal of luminescence, 2010, 31(2): 291-295.
研究了MoO
3
阳极缓冲层对基于CuPc/C
60
异质结的有机小分子太阳电池器件性能的影响。发现:MoO
3
阳极缓冲层略微降低了器件的短路电流、开路电压及能量转换效率;MoO
3
阳极缓冲层提高了器件的整流比;具有MoO
3
阳极缓冲层的器件在持续光照条件下连续工作20 min
其主要性能参数(如短路电流、开路电压、填充因子及能量转换效率)无明显衰减
而没有MoO
3
阳极缓冲层的对比器件在相同条件下连续工作20 min
其能量转换效率衰减了大约45%。研究结果表明:MoO
3
阳极缓冲层明显提高了基于CuPc/C
60
异质结的有机小分子太阳电池器件的稳定性
可能的原因主要是MoO
3
阳极缓冲层改善了ITO阳极和CuPc界面
抑制了因持续光照连续工作引起的界面老化
从而提高了器件的稳定性。
Organic solar cells (OSCs) have attracted considerable attention due to their potential for low-cost and large-area solar energy conversion. A lot of work has been undertaken on the electrode buffer layer
which could improve the interface between the electrode and the organic active materials
block exciton to prevent exciton quench at the interface and increase the charge collection
leading to enhanced performance of the OSCs. In this article
the effect of molybdenum oxide (MoO
3
) buffer layer on the performance of the OSCs with a heterojunction of CuPc/C
60
was investigated. It was found that the OSCs
with a 10 nm thick MoO
3
anode buffer layer
showed a little smaller short current
open voltage and power conversion efficiency compared to the control devices without the MoO
3
anode buffer layer. However
the stability of the devices with a 10 nm thick MoO
3
anode buffer layer is significantly improved: under uninterrupted illumination
the fill factor
open voltage
and power conversion efficiency of the device without MoO
3
buffer layer decreases 45% during 20 minute continuous operating
while the fill factor
open voltage
and power conversion efficiency of the device with a 10 nm MoO
3
anode buffer layer keeps nearly constant
which is attributed to the suppression of the degradation of the interface between ITO and CuPc caused by the uninterrupted illumination
by inducing a MoO
3
buffer layer into the interface.
. Huang Q X, Yuan Y B, Lian J R, et al. The effects of CuPc thin film deposition rate on organic photovoltaic device performance [J]. Chin. J. Lumin. (发光学报), 2008, 29 (3):433-436 (in Chinese).
. Deng M Z, Zou H H, Wang C, et al. Influence on mobility of the C60 layer doped pentacene to the organic solar cell characteristics [J]. J. Hunan University of Technology (湖南工业大学学报), 2008, 22 (3):35-38 (in Chinese).
. Su M C, Yi L X, Wang Y, et al. Investigation on performance enhancement of bulk heterojunction organic solar cells [J]. Spectroscopy and Spectral Analysis (光谱学与光谱分析), 2008, 28 (4):740-744 (in Chinese).
. Kim J Y, Lee K H, Coats N E, et al. Efficient tandem polymer solar cells fabricated by all-solution processing [J]. Science, 2007, 317 (5835):222-225.
. Xue J G, Rand B P, Uchida S, et al. Mixed donor-acceptor molecular heterojunctions for photovoltaic applications Ⅱ.device performance [J]. J. Appl. Phys., 2005, 98 (12):124903-1-9.
. Shrotriya V, Li G, Yao Y, et al. Transition metal oxides as the buffer layer for polymer photovoltaic cells [J]. Appl. Phys. Lett., 2006, 88 (7):073508-1-3.
. Tao C, Ruan S P, Zhang X D, et al. Performance improvement of inverted polymer solar cells with different top electrodes by introducing a MoO3 buffer layer [J]. Appl. Phys. Lett., 2008, 93 (19):193307-1-3.
. Li N, Lassiter B E, Lunt R R, et al. Open circuit voltage enhancement due to reduced dark current in small molecule photovoltaic cells [J]. Appl. Phys. Lett., 2009, 94 (2):023307-1-3.
. Kinoshita Y, Takenaka R, Murata H. Independent control of open-circuit voltage of organic solar cells by changing film thickness of MoO3 buffer layer [J]. Appl. Phys. Lett., 2008, 92 (24):243309-1-3.
. Hansel H, Zettl H, Krausch G, et al. Combinatorial study of the long-term stability of organic thin-film solar cells [J]. Appl. Phys. Lett., 2002, 81 (11):2106-2108.
. Heutz S, Sullivan P, Sanderson B M, et al. Influence of molecular architecture and intermixing on the photovoltaic, morphological and spectroscopic properties of CuPc-C60 heterojunctions [J]. Sol. Energy Mater. Sol. Cells, 2004, 83 (2-3):229-245.
. Song Q L. Study of the interfaces of small molecular weight organic solar cells . Shanghai: Fudan University (复旦大学), 2007 (in Chinese).
. Jorgensen M, Norrman K, Krebs F C. Stability/degradation of polymer solar cells [J]. Sol. Energy Mater. Sol. Cells, 2008, 92 (7):686-714.
. Krebs F C, Norrman K. Analysis of the failure mechanism for a stable organic photovoltaic during 10 000 h of testing [J]. Prog. Photovolt: Res. Appl., 2007, 15 (8):697-712.
. Krebs F C, Carle J E, Bagger N C, et al. Lifetimes of organic photovoltaics:photochemistry, atmosphere effects and barrier layers in ITO-MEHPPV ∶ PCBM-aluminium devices [J]. Sol. Energy Mater. Sol. Cells, 2005, 86 (4):499-516.
. Moliton A, Nunzi J. How to model the behaviour of organic photovoltaic cells [J]. Polym. Int., 2006, 55 (6):583-600.
. Kanai Y, Matsushima T, Murata H. Improvement of stability for organic solar cells by using molybdenum trioxide buffer layer [J]. Thin Solid Films, 2009, 518 (2):534-540.
. You H, Dai Y F, Zhang Z Q, et al. Improved performances of organic light-emitting diodes with metal oxide as anode buffer [J]. J. Appl. Phys., 2007, 101 (2):026105-1-3.
0
浏览量
209
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构