
浏览全部资源
扫码关注微信
1. 中国农业大学理学院 应用物理系 北京,100083
2. 中国科学院半导体研究所 集成光电子学国家重点实验室, 北京 100083
收稿日期:2009-02-19,
修回日期:1900-01-02,
网络出版日期:2009-12-30,
纸质出版日期:2009-12-30
移动端阅览
周 梅, 赵德刚. 结构参数对GaN肖特基紫外探测器性能的影响及器件设计[J]. 发光学报, 2009,30(6):824-831.
ZHOU Mei, ZHAO De-gang. Effect of Structure Parameters on the Performances of GaN Schottky Barrier Ultraviolet Photodetectors and Device Design[J]. Chinese journal of luminescence, 2009, 30(6): 824-831.
研究了GaN肖特基结构(n
-
-GaN /n
+
-GaN)紫外探测器的结构参数对器件性能的影响机理。模拟计算结果表明:提高肖特基势垒高度和减小表面复合速率
不仅可以增加器件的量子效率
而且可以极大地减小器件的暗电流;适当地增加n
-
-GaN层厚度和载流子浓度可以提高器件的量子效率
但减小n
-
-GaN层的载流子浓度却有利于减小器件的暗电流。我们针对实际应用的需要
提出了一个优化器件结构参数的设计方案
特别是如果实际应用中对器件的量子效率和暗电流都有较高的要求
肖特基势垒高度应该≥0.8 eV
n
-
-GaN层的厚度≥200 nm
载流子浓度1×10
17
cm
-3
左右
表面复合速率<1×10
7
cm/s。
The influence of structure parameters on the performance of GaN Schottky barrier (n
-
-GaN /n
+
-GaN)ultraviolet photodetectors was investigated. The simulation results indicated that the performance can be improved by increasing the Schottky barrier height and decreasing the surface recombination velocity
thus
the quantum efficiency could be enhanced and the dark current could be rapidly reduced. It was also found that the quantum efficiency can be increased by increasing the thickness or the carrier concentration of n
-
-GaN layer
however
the dark current can be reduced by decreasing the thickness of n
-
-GaN layer. A good design of GaN Schottky barrier ultraviolet photodetector is proposed. Especially for the fabrication of GaN Schottky barrier ultraviolet photodetector with high quantum efficiency and low dark current
the Schottky barrier should be higher than 0.8 eV
the thickness of n
-
-GaN layer should be larger than 200 nm
the carrier concentration of n
-
-GaN layer should be around 1×10
17
cm
-3
and the surface recombination velocity should be lower than 1×10
7
cm/s.
. Mukai T, Nagahama S, Iwasa N, et al. InGaN-based light-emitting diodes and laser diodes [J]. Chin. J. Lumin. (发光学报), 2001, 22 (Supp.):48-52 (in English).
. Carrano J C, Li T, Brown D L, et al. Very high-speed metal-semiconductor-metal ultraviolet photodetectors fabricated on GaN [J]. Appl. Phys. Lett., 1998, 73 (17):2405-2407.
. Chen Q, Yang J W, Osinsky A, et al. Schottky barrier detectors on GaN for visible-blind ultraviolet detection [J]. Appl. Phys. Lett., 1997, 70 (17):2277-2279.
. Lee M L, Sheu J K, Lai W C, et al. Characterization of GaN Schottky barrier photodetectors with a low-temperature GaN cap layer [J]. J. Appl. Phys., 2003, 94 (3):1753-1757.
. Jhou Y D, Chang S J, Su Y K, et al. GaN Schottky barrier photodetectors with SiN/GaN nucleation layer [J]. Appl. Phys. Lett., 2007, 91 (10):103506-1-3.
. Zhang S K, Wang W B, Shtau I, et al. Backilluminated GaN/AlGaN heterojunction ultraviolet photodetector with high internal gain [J]. Appl. Phys. Lett., 2002, 81 (25):4862-4864.
. Pau J L, Bayram C, Giedraitis P, et al. GaN nanostructured p-i-n photodiodes [J]. Appl. Phys. Lett., 2008, 93 (22):221104-1-3.
. McClintock R, Mayes K, Yasan A, et al. 320×256 solar-blind focal plane arrays based on AlGaN [J]. Appl. Phys. Lett., 2005, 86 (1):01117-1-3.
. Electronic Materials and Processing Research Laboratory. "AMPS-ID" . Peann State University: http://www.cneu.psu.edu/ampsld.html.
. Zhou M, Zuo S H, Zhao D G. A New Schottky barrier structure of GaN-based ultraviolet photodetector [J]. Acta Phys. Sin. (物理学报), 2007, 56 (9):5513-5517 (in Chinese).
. Sze S M. Physics of Semiconductor Devices [M]. New York: John Wiley & Sons, 1981.
. Zhang X, Kung P, Walker D, et al. Photovoltaic effects in GaN structures with p-n junctions [J]. Appl. Phys. Lett., 1995, 67 (14):2028-2030.
. Lee M L, Sheu J K, Lin S W. Schottky barrier heights of metal contacts to n-type gallium nitride with low-temperature-grown cap layer [J]. Appl. Phys. Lett., 2006, 88 (3):032103-1-3.
0
浏览量
270
下载量
6
CSCD
关联资源
相关文章
相关作者
相关机构
京公网安备11010802024621