浏览全部资源
扫码关注微信
1. 海南师范大学 物理与电子工程学院,海南 海口,571158
2. 中国科学院激发态物理重点实验室 长春光学精密机械与物理研究所,吉林 长春,130033
收稿日期:2009-02-23,
修回日期:1900-01-02,
网络出版日期:2009-12-30,
纸质出版日期:2009-12-30
移动端阅览
张铁民, 缪国庆, 宋 航, 等. 缓冲层生长温度对In0.82Ga0.18As 薄膜结构及电学性能的影响[J]. 发光学报, 2009,30(6):787-791.
ZHANG Tie-min, MIAO Guo-qing, SONG Hang, et al. Effect of Buffer Layer Growth Temperature on Structural and Electrical Properties of In0.82Ga0.18As with Two Step Growth Technique[J]. Chinese journal of luminescence, 2009, 30(6): 787-791.
张铁民, 缪国庆, 宋 航, 等. 缓冲层生长温度对In0.82Ga0.18As 薄膜结构及电学性能的影响[J]. 发光学报, 2009,30(6):787-791. DOI:
ZHANG Tie-min, MIAO Guo-qing, SONG Hang, et al. Effect of Buffer Layer Growth Temperature on Structural and Electrical Properties of In0.82Ga0.18As with Two Step Growth Technique[J]. Chinese journal of luminescence, 2009, 30(6): 787-791. DOI:
采用低压金属有机化学气相沉积(LP-MOCVD)技术
两步生长法在InP衬底上制备In
0.82
Ga
0.18
As材料。研究缓冲层的生长温度对In
0.82
Ga
0.18
As薄膜的结构及电学性能的影响。固定外延薄膜的生长条件
仅改变缓冲层生长温度(分别为410
430
450
470 ℃)
且维持缓冲层其他生长条件不变。用拉曼散射研究样品的结构性能
测量四个样品的拉曼散射光谱
得到样品的GaAs的纵向光学(LO)声子散射峰的非对称比分别为1.53
1.52
1.39和1.76。测量样品的霍耳效应表明
载流子浓度随缓冲层生长温度变化而改变
同时迁移率也随缓冲层生长温度变化而改变。通过实验得出:缓冲层的生长温度能够影响In
0.82
Ga
0.18
As薄膜的结构及电学性能。最佳的缓冲层生长温度为450 ℃。
In
0.82
Ga
0.18
As was grown by low-pressure metal organic chemical vapor deposition (LP-MOCVD) on InP substrates with two-step growth technique. Effect of buffer layer growth temperature on structural and electrical properties of In
0.82
Ga
0.18
As was analyzed
which was characterized by scanning electron microscopy (SEM)
Raman scattering and Hall measurement. The results showed that the properties of epilayers have close relation to the buffer layer growth temperature and the optimum buffer layer growth temperature was about 450 ℃.
. Hoogeveen Ruud W M, Van der A Ronald J, Goede Albert P H. Extended wavelength InGaAs infrared (1.0~2.4 μm) detector arrays on SCIAMACHY for space-based spectrometry of the Earth atmosphere [J]. Infrared Phys. Techn., 2001, 42 (1):1-16.
. Nagai H, Noguchi Y. Crack formation in InP-GaxIn1-xAs-InP double heterostructure fabrication [J]. Appl. Phys. Lett., 1976, 29 (11):740-741.
. Bandy S, Nishimoto C, Hyder S, et al. Saturation velocity determination for In0.53Ga0.47As field-effect transistors [J]. Appl. Phys. Lett., 1981, 38 (10):817-819.
. Murray S L, Newman F D, Murray C S, et al. MOCVD growth of lattice-matched and mismatched InGaAs materials for thermophotovoltaic energy conversion [J]. Semicond. Sci. Technol., 2003, 18 (5):s202-s208.
. Bachmann K J, Shay J L. An InGaAs detector for the 1.0~1.7 μm wavelength range [J]. Appl. Phys. Lett., 1978, 32 (7):446-448.
. Durel S, Caulet J, Gauneau M, et al. High quality lattice mismatched InGaAs layer grown on InP . Second International Conference on Indium Phosphide and Related Materials, New York: IEEE, 1990, 139-143.
. Chai Y G, Chow R. Molecular beam epitaxial growth of lattice-mismatched In0.77Ga0.23As on InP [J]. J. Appl. Phys., 1982, 53 (2):1229-1232.
. Wada M, Hosomatsu H. Wide wavelength and low dark current lattice-mismatched InGaAs/InAsP photodiodes grown by metalorganic vapor-phase epitaxy [J]. Appl. Phys. Lett., 1994, 64 (10):1265-1267.
. Ko H J, Chen Y F, Ko J M, et al. Two-step MBE growth of ZnO layers on electron beam exposed (111)CaF2 [J]. J. Cryst. Growth, 1999, 207 (1-2):87-94.
. Chen H, Guo L W, Cui Q, et al. Low-temperature buffer layer for growth of a low-dislocation-density SiGe layer on Si by molecular-beam epitaxy [J]. J. Appl. Phys., 1996, 79 (2):1167-1169.
. Shih C F, Chen N C, Lin S Y, et al. AlGaN films grown on (0001) sapphire by a two-step method [J]. Appl. Phys. Lett., 2005, 86 (21):211103-1-3.
. Yuan H R, Chua S J, Miao Z L, et al. Growth and structural properties of thick InAs films on GaAs with low-pressure metal-organic vapor phase epitaxy [J]. J. Cryst. Growth, 2004, 273 (1-2):63-67.
. Akasaki I. Nitride semiconductors-impact on the future world [J]. J. Cryst. Growth, 2002, 237-239 (2):905-911.
. Zhang T, Miao G, Jin Y, et al. Effect of In content of the buffer layer on crystalline quality and electrical property of In0.82Ga0.18As/InP grown by LP-MOCVD [J]. Microelectron. J., 2007, 38 (3):398-400.
. Snyder C W, Mansfield J F, Orr B G. Kinetically controlled critical thickness for coherent islanding and thick highly strained pseudomorphic films of InxGa1-xAs on GaAs(100) [J]. Phys. Rev. B, 1992, 46 (15):9551-9854.
. Goldman R S, Chang J C P, Kavanagh K L. Control of surface morphology and strain relaxation in InGaAs grown on GaAs using a step-graded buffer [J]. SPIE, 1994, 2140 :179-188.
. Groenen J, Landa G, Carles R, et al. Tensile and compressive strain relief in InxGa1-xAs epilayers grown on InP probed by Raman scattering [J]. J. Appl. Phys., 1997, 82 (2):803-809.
. Jusserand B, Voisin P, Voos M, et al. Raman scattering in GaSb-AlSb strained layer superlattices [J]. Appl. Phys. Lett., 1985, 46 (7):678-680.
0
浏览量
111
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构