浏览全部资源
扫码关注微信
陕西师范大学 物理学与信息技术学院,陕西 西安,710062
收稿日期:2008-08-25,
修回日期:1900-01-02,
网络出版日期:2009-06-30,
纸质出版日期:2009-06-30
移动端阅览
徐良敏, 张正龙, 蔡晓燕, 等. 金属表面荧光增强的物理增强机制[J]. 发光学报, 2009,30(3):373-378.
XU Liang-min, ZHANG Zheng-long, CAI Xiao-yan, et al. Physical Mechanisms of Fluorescence Enhancement at Metal Surface[J]. Chinese journal of luminescence, 2009, 30(3): 373-378.
具有特殊形貌及构型的表面(如金属薄膜)能够使位于其邻近的荧光分子的荧光信号得到增强
这种现象被称之为表面增强荧光(Surface Enhanced Fluorescence
SEF)。有关表面增强荧光效应的研究探讨已有许多报道
并先后提出了多种增强机理以试图理解和解释观测到的实验现象。本文将在总结归纳已有机理研究的基础上
从物理学的角度出发分析理解局域场增强、能量转移以及辐射衰减速率增加等理论模型
并对衬底表面与荧光分子之间的间距变化对增强效果的影响进行探讨。
Metal surfaces with special morphologies can enhance the fluorescent emission signals of fluorophores at the surface. This phenomenon is named Surface Enhanced Fluorescence (SEF). Up to now
many investigations have been carried on SEF
various kinds of theoretical models have been raised to understand the mechanism of the observed SEF effects. This paper will try to analyze and understand the proposed enhancement mechanisms of the SEF from the point of physics
explore the physical processes and relations of local field enhancement
energy transfer
and plasmon coupled emission models. The influence of the distance between the fluorophore and the metal surface on the enhancement defect will be discussed
too.
. Drexhage K H. Influence of a dielectric interface on fluorescence decay time [J]. J. Lumin., 1970, 1-2 :693-701.
. Drexhage K H. Progress in Optics [M]. Edited by Northholland, Amsterdan: E. Wolf, ed. 1974, 161-323.
. Fleischmann M, Hendra P J, McQuillan A J. Raman spectra of pyridine adsorbed at a silver electrode [J]. Chem. Phys. Lett., 1974, 26 (2):163-166.
. Jeanmaire D L, Van Duyne R P. Surface Raman spectroelectrochemistry Part Ⅰ. Heterocyclic, amromatic, and aliphatic amines adsorbed on anodized silver electrode [J]. J. Electroanal. Chem., 1977, 84 (1):1-20.
. Albrecht M G, Creighton J A. Anomalously intense Raman spectra of pyridine at a silver electrode [J]. J. Am. Chem. Soc., 1977, 99 (15):5215-5217.
. Emmanuel Fort, Samuel Grésillon. Surface enhanced fluorescence [J]. J. Phys. D: Appl. Phys., 2008, 41 (1):013001-1-3.
. Lu Fengting, Zheng Hairong, Fang Yu. Studies of surface-enhanced fluorescence [J]. Progress in Chemistry (化学进展), 2007, 19 (2-3):256-266 (in Chinese).
. Lakowicz J R. Radiative decay engineering: Biophysical and biomedical applications [J]. Anal. Biochem., 2001, 298 (1):1-24.
. Lakowicz J R. Radiative decay engineering 5: Metal-enhanced fluorescence and plasmon emission [J]. Anal. Biochem., 2004, 337 (2):171-194.
. Lakowicz J R. Plasmonics in biology and plasmon-controlled fluorescence [J]. Plasmonics, 2006, 1 (1):5-33.
. Wang Guanzhong, Ye Feng, Chang Chao. Surface enhanced Raman spectroscopy of RhB dye molecular adsorbed on the silver particles prepared on porous silicon [J]. Chin. J. Lumin. (发光学报), 1999, 20 (3):270-273 (in Chinese).
. Li Yongfang, Wei Ang, Yu Mingbin, et al. Fluorescence enhanced effect of porous silicon absorbing dye molecules [J]. Acta Optica Sinica (光学学报), 1999, 19 (4):562-566 (in Chinese).
. Zhang Yongxia, Aslan K, Previte M J R. Metal-enhanced fluorescence: Surface plasmons can radiate a fluorophores structured emission [J]. Appl. Phys. Lett., 2007, 90 (5):053107-1-3.
. Ritchie R H. Plasma losses by fast electrons in thin films [J]. Phys. Rev., 1957, 106 (5):874-881.
. Maler S A. Plasmonics: Fundamentals and Applications [M]. Berlin: Springer, 2007.
. Aslan K, Leonenko Z, Lakowicz J R, et al. Annealed silver-island films for applications in metal-enhanced fluorescence:interpretation in terms of radiating plasmons [J]. J. Fluoresc., 2005, 15 (5):643-654.
. Wei A. Plasmonic Nanomaterials. Enhanced Optical Properties From Metal Nanoparticles and Their Ensembles, Nanoparticles:Building Blocks for Nanotechnology, 7 [M]. New York: Kluwer Academic/Plenum Publishers, 2004, 173-200, 284.
. Scharte M, Porath R, Ohms T, et al. Do Mie plasmons have a longer lifetime on resonance than off resonance? [J]. Appl. Phys. B, 2001, 73 (4):305-310.
. Dexter D L. A theory of sensitized luminescence in solids [J]. J. Chem. Phys., 1953, 21 (5):836-850.
. Ford G W, Weber W H. Electromagnetic interactions of molecules with metal surfaces [J]. Phys. Rept., 1984, 113 (4):195-287.
. Chance R R, Miller A H, Prock A, et al. Fluorescence and energy transfer near interfaces: the complete and quantitative description of the Eu3+/ mirror systems [J]. J. Chem. Phys., 1975, 63 (4):1589-1595.
. Kuhn H. Classical aspects of energy transfer in molecular systems [J]. J. Chem. Phys., 1970, 53 (1):101-108.
. Raether H. Surface Plasma Oscillations and Their Applications, in: Hass G, Francombe M H, Hofiman R W (Eds.), Physics of Thin Films [M]. New York: Academic Press, 1977.
. Geddes C D, Lakowicz J R. Editorial: Metal-enhanced fluorescence [J]. J. Fluoresc., 2002, 12 (2):121-129.
. Stefan A M, Pieter G K, Harry A A, et al. Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides [J]. Nature Materials, 2003, 2 (4):229-232.
. Nabika H, Deki S. Enhancing and quenching functions of silver nanoparticles on the luminescent properties of europium complex in the solution phase [J]. J. Phys. Chem. B, 2003, 107 (35):9161-9164.
. Wang Yuehui, ZhouJi, Shi Shikao. Enhancing and quenching effect of silver nanoparticles on the fluorescein fluorescence and quenching release by KCl [J]. J. Inorganic Chem.(无机化学学报), 2006, 22 (9):1579-1584 (in Chinese).
. Yamaguchi T, Kaya T, Takei H. Characterization of cap-shaped silver particles for surface-enhanced fluorescence eflects [J]. Anal. Biochem., 2007, 364 (2):171-179.
. ZhuangYan, Zhou Qun, Li Xiaowei. Fluorescence surface-enhancement effect of Ag-SiO2 core-shell nanoparticles [J]. J. Spectroscopy Laboratory (光谱实验室), 2005, 22 (4):881-884 (in Chinese).
0
浏览量
603
下载量
14
CSCD
关联资源
相关文章
相关作者
相关机构