浏览全部资源
扫码关注微信
宁波大学, 信息科学与工程学院, 浙江, 宁波, 315211
收稿日期:2004-08-24,
修回日期:2004-11-15,
纸质出版日期:2006-01-20
移动端阅览
沈祥, 聂秋华, 徐铁峰, 戴世勋, 王训四. Er<sup>3+</sup>/Yb<sup>3+</sup>共掺碲钨酸盐玻璃的热稳定性和1.5μm波段的光谱性质[J]. 发光学报, 2006,27(1): 36-40
SHEN Xiang, NIE Qiu-hua, XU Tie-feng, DAI Shi-xun, WANG Xun-si. Er<sup>3+</sup>/Yb<sup>3+</sup>Codoped Tungsten-tellurite Glasses:the Thermal Stability and Spectral Properties at 1.5 μm Band[J]. Chinese Journal of Luminescence, 2006,27(1): 36-40
沈祥, 聂秋华, 徐铁峰, 戴世勋, 王训四. Er<sup>3+</sup>/Yb<sup>3+</sup>共掺碲钨酸盐玻璃的热稳定性和1.5μm波段的光谱性质[J]. 发光学报, 2006,27(1): 36-40 DOI:
SHEN Xiang, NIE Qiu-hua, XU Tie-feng, DAI Shi-xun, WANG Xun-si. Er<sup>3+</sup>/Yb<sup>3+</sup>Codoped Tungsten-tellurite Glasses:the Thermal Stability and Spectral Properties at 1.5 μm Band[J]. Chinese Journal of Luminescence, 2006,27(1): 36-40 DOI:
制备了Er
3+
/Yb
3+
共掺的碲钨酸盐玻璃样品
TeO
2
-WO
3
-R
m
O
n
(R
m
O
n
=PbO
BaO
La
2
O
3
Bi
2
O
3
)
研究了样品的热稳定性和1.5μm波段的光谱性质。碲酸盐中引入WO
3
的目的是为提高基质的声子能量
使Er
3+
离子
4
I
13/2
→
4
I
15/2
的多声子弛豫速率增加
从而提高
4
I
13/2
能级上的Er
3+
离子数
这对提高1.5μm处的荧光强度有利
另外加入WO
3
也能提高碲酸盐玻璃的抗析晶能力。测试了样品的FT-IR光谱
发现碲钨酸盐玻璃样品中存在着TeO
4
、TeO
3
、WO
4
和WO
6
结构体。周围环境的不对称性导致Er
3+
在1.5μm处的光谱有非均匀的展宽和大的受激发射截面。Er
3+
在70TeO
2
-20WO
3
-10Bi
2
O
3
玻璃中
4
I
13/2
→
4
I
15/2
能级发射的荧光半峰全宽(FWHM)为77nm
应用McCumber理论计算的受激发射截面(σ
peak
)为1.03×10
-20
cm
2
。其FWHM×σ
peak
乘积远大于掺Er
3+
的铋酸盐、磷酸盐、碲酸盐和硅酸盐玻璃
说明碲钨酸盐玻璃是一种制备宽带光纤放大器优良基质材料。
Er
3+
/Yb
3+
codoped tungsten-tellurite (WT) glasses
TeO
2
-WO
3
-R
m
O
n
(R
m
O
n
=PbO
BaO
La
2
O
3
Bi
2
O
3
)
were prepared and investigated. WO
3
has been introduced in the tellurite glasses due to the following two reasons: The first one is to increase the phonon energy and the!multi-phonon relaxation rate of the Er
3+
:
4
I
11/2
→
4
I
13/2
transition
which benefits the population inversion between the
4
I
13/2
and
4
I
15/2
level of Er
3+
.The second is to enhance the thermal stability against crystallization. The structural studies were done through FT-IR spectral analysis and revealed that these glasses contain TeO
4
TeO
3
WO
4
and WO
6
units as the local structures. The asymmetry of Er
3+
sites results in inhomogeneous broadening of spectra and large emission cross-section at 1.5 μm band. The fluorescence full width at half maximum FWHM=77 nm
and the peak of the emission cross-section σ
peak
=1.03×10
-20
cm
2
are manifested in 70TeO
2
-20WO
3
-10Bi
2
O
3
glass. The gain bandwidth properties
FWHM×σ
e
peak
of Er
3+
in WT glasses have advantages over those of bismuthate
phosphate
tellurite and silicate glasses
indicating the WT glasses are promising host materials for 1.5 μm broadband amplification.
Park N,Wysocki P,Pedrazzani R,et al.High-power Er-Yb-doped fiber amplifier with multichannel gain flatness within 0.2 dB over 14 nm[J].IEEE Photon.Technol.Lett.,1996,8:1148-1150.
Delavaux J,Granlund S,Mizuhara O,et al.Integrated optics erbium-ytterbium amplifier system in 10-Gb/s fiber transmission experiment[J].IEEE Photon.Technol.Lett.,1997,9:247-249.
Laporta P,Taccheo S,Longhi S,et al.Erbium-ytterbium microlasers:optical properties and lasing characteristics[J].Opt.Mater.,1999,11:269-288.
Nilsson J,Scheer P,Jaskorzynska B.Modeling of optimization of short Yb3+-sensitized Er3+-doped fiber amplifers[J].IEEE Photon.Technol.Lett.,1994,6:383-385.
Li Jiacheng,Li Shunguang,Hu Hefang,et al.Spectroscopic properties of Yb3+/Er3+-codoped TeO2-WO3-ZnO glasses[J].Chin.J.Lumin.(发光学报),2004,25(5):495-500 (in Chinese).
Chen Z J,Minelly J D,Gu Y.Compact low cost Er3+/Yb3+ co-doped fiber amplifiers pumped by 827 nm laser diode[J].Electron.Lett.,1996,32:1812-1813.
Santos P V,Vermelho M V D,Gouveia E A,et al.Infrared-to-visible frequency upconversion in Pr3+/Yb3+-and Er3+/Yb3+-codoped tellurite glasses[J].J.Alloys Compd.,2002,344:304-307.
Yang J H,Zhang L Y,Wen L,et al.Optical transitions and upconversion luminescence of Er3+/Yb3+-codoped halide modified tellurite glasses[J].J.Appl.Phys.,2004,95(6):3020-3026.
Mori A,Ohishi Y,Sudo S.Erbium-doped tellurite glass fiber laser and amplifier[J].Electron.Lett.,1997,33(10):863-864.
Wang J S,Vogel E M,Snitzer E.Tellurite glass:a new candidate for fiber devices[J].Opt.Mater.,1994,3:187-203.
Kosuge T,Benino Y,Dimitrov V,et al.Thermal stability and heat capacity changes at the glass transition in K2O-WO3-TeO2 glasses[J].J.Non-Cryst.Solids,1998,242:154-164.
Neindre L L,Jiang S,Hwang B C,et al.Effect of relative alkali content onabsorption linewidth in erbium-doped tellurite glasses[J].J.Non-Cryst.Solids,1999,255:97-102.
Charton P,Gengembre L,Armand P,et al.TeO2-WO3 glasses:infrared,XPS and XANES structural characterizations[J].J.Solid State Chem.,2002,168:175-183.
El-Moneim A.DTA and IR absorption spectra of vanadium tellurite glasses[J].Mater.Chem.Phys.,2002,73:318-322.
Ding Y,Jiang S,Hwang B C,et al.Spectral properties of erbium-doped lead halotellurite glasses for 1.5 μm broadband amplification[J].Opt.Mater.,2000,15:123-130.
Shen S,Jha A,Zhang E,et al.Compositional effects and spectroscopy of rare earths (Er3+,Tm3+,and Nd3+) in tellurite glasses[J].C.R.Chimie,2002,5:921-938.
Lin H,Meredith G,Jiang S,et al.Optical transitions and visible upconversion in Er3+ doped niobic tellurite glass[J].J.Appl.Phys.,2003,93:186-191.
McCumber D E.Theory of phonon-terminated optical masers[J].Phys.Rev.,1964,134(2A):A299-A306.
Miniscalo W J,Quimby R S.General procedure for the analysis of Er3+ cross sections[J].Opt.Lett.,1991,16:258-260.
Yang J,Dai S,Zhou Y,et al.Spectroscopic properties and thermal stability of erbium-doped bismuth-based glass for optical amplifier[J].J.Appl.Phys.,2003,93(2):977-983.
Zhou X,Toratani H.Evaluation of spectroscopic properties of Yb3+-doped glasses[J].Phys.Rev.B,1995,52:15889-15897.
Hocdé S,Jiang S,Peng X,et al.Er3+ doped boro-tellurite glasses for 1.5 μm broadband amplification[J].Opt.Mater.,2004,25:149-156.
0
浏览量
356
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构