浏览全部资源
扫码关注微信
中国科学院长春物理研究所, 长春 130021
收稿日期:1991-04-09,
纸质出版日期:1992-05-30
移动端阅览
赵安平, 于荣金. 多量子阱平面光波导的有限元分析[J]. 发光学报, 1992,13(2): 107-110
Zhao Anping, Yu Rongjin. FINITE ELEMENT ANALYSIS OF MQW PLANAR WAVEGUIDES[J]. Chinese Journal of Luminescence, 1992,13(2): 107-110
本文利用有限元法分析了多量子阱平面光波导的传播特性
给出了任意阱数多量子阱光波导_TE模和TM模的有效折射率和TE模的强度分布.结果表明:γ(势阱与势垒的厚度比)值的改变
影响波导中导模的模式数目、有效折射率、双折射和强度分布;并发现在某些情况下
均方根近似是不适用的.
The Finite Element Method (FEM) has been applied to the analysis of propagation characteristics of MQW planar waveguides. Effective indexes and intensity profiles for both TE and TM modes in MQW waveguides with an arbitrary number of wells are presented. The results show that the variation of r affects the number of modes
effective indexes
birefringence and intensity profiles of the propagating mode in the waveguides. Comparing the FEM with the RMS approach of Ohke et al.
we found that the formulae of RMS were not correct in certain conditions.
G.J, Sonek, J.M.Ballantyne, Y.J.Chen, G.M.Carter, S. W. Brown, E.S. Koteles and J. P.Salerno, IEEE J. Quantum Electron., QE-22(7), 1015(1986).
D.M.Cooper, C.P.Seltzer, M, Aylett, D.J.Elton, M. Harlow, H. Wickes and D. L. Murrell, Electron. Lett., 25(24), 1835(1989).
D.A.B.Miller, Optics&Photonics News, 1(2), 7(1990).
S.Ohke, T.Umeda and Y.Cho, Opt. Commun., 56(4), 235(1985).
S.Ohke, T.Umeda and Y.Cho, Opt. Commun., 70(2), 92(1889).
I.M.Skinner, R.Shail and B.L, Weiss, IEEE T.Quantum Electron., QE-25(1), 6(1989).
B.L, Weiss and A.P.Zhao, IEEE Photonics Technology Lett., 2(11), 801(l990).
0
浏览量
88
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构