
浏览全部资源
扫码关注微信
内蒙古大学固体物理研究室
收稿日期:1985-02-26,
纸质出版日期:1985-05-30
移动端阅览
班士良, 顾世洧. 准一维聚合物中的声学极化子[J]. 发光学报, 1985,6(2): 85-95
Ban Shiliang, Gu Shiwei. ACOUSTICAL POLARONS IN QUASI-ONE-DIMENSIONAL POLYMERS[J]. Chinese Journal of Luminescence, 1985,6(2): 85-95
本文讨论准一维聚合物中的一维电子通过形变势与三维声学声子相互作用
对弱耦合和中间耦合情形
导出了极化子基态能量和有效质量。结果表明
在这种混合维数模型中
可形成稳定的极化子。
For the low-speed electrons
moving along the chains of quasi-one-dimensional polymers
the polymers can be regarded as continuous media. In this paper
a continuons model of mixer dimension (Wilson 1982)is adopted and the interaction of a one-dimensional electron with three-dimensional phonons via deformation potential is discussed. The Hamiltonian of electron-phonon system is
the un-perturbed ground state is 1/√
L
1
e
i q
|0
>
(in perturbation method)and trial wavefunction |ψ
>
=U
1
U
2
|0
>
(in LLP method). In the weak coupling (with perturbation method)and intermediate coupling(with LLP method)cases
the analytic formulas of ground state energy of the polaron are presented. The self-energy of the polaron
<
img style="vertical-align: middle" alt="" order="0" src="http://www.rhhz.net/qikantupian/fgxb-198502-95-2.gif" /
>
. The result indicates that thelongitudinal deformation potential is contributed to form the bound state of electron
but the effect of the cross deformation potential quite the contrary For general polymers
a
(longitudinal coupling constant)
>
>
a
1
(cross coupling constant)
therefore the stable polaron can be formed in the mixed dimensional model.
0
浏览量
64
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构
京公网安备11010802024621