Yang TANG. In(NO3)3 Induced Tailoring of ZnO Nanorods' Optical Properties by Electrodeposition[J]. Chinese journal of luminescence, 2020, 41(5): 571-578.
DOI:
Yang TANG. In(NO3)3 Induced Tailoring of ZnO Nanorods' Optical Properties by Electrodeposition[J]. Chinese journal of luminescence, 2020, 41(5): 571-578. DOI: 10.3788/fgxb20204105.0571.
In(NO3)3 Induced Tailoring of ZnO Nanorods' Optical Properties by Electrodeposition
In order to implant ZnO nanostructures in new optoelectronic devices such as solar cells
it is necessary to tailor and control the ZnO nanorod arrays' morphology
optical and electrical properties. The ZnO nanorod arrays were fabricated by electrodeposition. In(NO
3
)
3
and NH
4
NO
3
were incorporated in the basic Zn(NO
3
)
2
electrolytes. The characterizations of the ZnO nanorods including the scanning electron microscopy
tranmission spectra
reflection spectra and photoluminescence were used to analyze the ZnO nanorods' morphology
optical and electrical properties. The ZnO nanorods' average diameter was decreased from 57 nm to 30 nm with increasing the In(NO
3
)
3
concentration. The reduce of the ZnO nanorods' density resulted in the increase of the distance between nanorods to 41 nm. The ZnO nanorods' optical band showed blue shift from 3.46 eV to 3.55 eV. The Stokes shift in ZnO nanorods was reduced from 198 meV to 154 meV with the increase in the In(NO
3
)
3
concentration
indicating the suppression of the nonradiative recombination. The ZnO nanorods' physical properties such as the diameter
density
distance
transmission
reflection
optical band gap energy
near band edge emission and nonradiative recombination can be controlled and tailored by incorporating In(NO
ZHENG G F, HE G Q, LIU H Y, et al .. Electrospun zinc oxide nanofibrous gas sensors for alcohol and acetone[J]. Opt. Precision Eng ., 2014, 22(6):1555-1561. (in Chinese)
HU Y, HU G X, ZHANG J J, et al .. Fabrication of ZnO nanorods/CdS quantum dots and its detection performance in UV-visible waveband[J]. Chin. Opt ., 2019, 12(6):1271-1278. (in Chinese)
KANG D R, YE Y, WANG J S, et al .. Fabrication and field emission properties of patterned ZnO arrays[J]. Chin. J. Liq. Cryst. Disp. , 2017, 32(5):367-371. (in Chinese)
SUN Y, LI Q. Research of zinc oxide quantum dot light-emitting diodes based on preparation of chemical solutions[J]. Chin. J. Liq. Cryst. Disp. , 2016, 31(7):635-642. (in Chinese)
ZHAO H X, FANG X, WANG Y B, et al .. Formation of interface defects of ZnO/ZnS core-shell nanowires and its optical properties investigations[J]. Chin. Opt ., 2019, 12(4):872-879. (in Chinese)
SU S C, YANG X D, HU C D. Fabrication of ZnO nanowall-network ultraviolet photodetector on Si substrates[J]. J.Semicond ., 2011, 32(7):074008.
SUN X Y, AZAD F, WANG S P, et al .. Low-cost flexible ZnO microwires array ultraviolet photodetector embedded in PAVL substrate[J]. Nano. Res. Lett ., 2018, 13(1):277-1-8.
GAO S Y, ZHANG J J, LI W Q, et al .. Near room temperature and large-area synthesis of ZnO/Cu 2 O heterojunction for photocatalytic properties[J]. Chem. Phys. Lett ., 2018, 692:14-18.
AMANY A, WANG D B, WANG J Z, et al .. Enhanced the UV response of AlN coated ZnO nanorods photodetector[J]. J. Alloys Compd ., 2019, 776:111-115.
KIM D, YUN I, KIM H. Fabrication of rough Al doped ZnO films deposited by low pressure chemical vapor deposition for high efficiency thin film solar cells[J]. Curr. Appl. Phys ., 2010, 10(3):S459-S462.
LUKA G, WITKOWSKI B S, WACHNICKI L, et al .. Electrical and mechanical stability of aluminum-doped ZnO films grown on flexible substrates by atomic layer deposition[J]. Mater. Sci. Eng .:B, 2014, 186:15-20.
COMAN T, URSU E L, NICA V, et al .. Improving the uncommon (110) growing orientation of Al-doped ZnO thin films through sequential pulsed laser deposition[J]. Thin Solid Films , 2014, 571:198-205.
EVCIMEN DUYGULU N, KODOLBAS A O, EKERIM A.Effects of argon pressure and r.f.power on magnetron sputtered aluminum doped ZnO thin films[J]. J. Cryst. Growth , 2014, 394:116-125.
KUMAR A, HUANG N, STAEDLER T, et al .. Mechanical characterization of aluminum doped zinc oxide (Al:ZnO) nanorods prepared by sol-gel method[J]. Appl. Surf. Sci ., 2013, 265:758-763.
CHEN Z W, ZHAN G H, WU Y P, et al .. Sol-gel-hydrothermal synthesis and conductive properties of Al-doped ZnO nanopowders with controllable morphology[J]. J. Alloys Compd ., 2014, 587:692-697.
TANG Y, ZHAO Y, ZHANG Z G, et al .. Hydrothermal synthesis and properties of ZnO nanorod arrays[J]. Chin. J. Mater. Res ., 2015, 29(7):529-534. (in Chinese)
TANG Y, CHEN J. Optical band gap blue shift and Stokes shift in Al-doped ZnO nanorods by electrodeposition[J]. Chin. J. Lumin ., 2014, 35(10):1165-1171. (in Chinese)
CHEN J, YE H, AÉ L, et al .. Tapered aluminum-doped vertical zinc oxide nanorod arrays as light coupling layer for solar energy applications[J]. Sol. Energy Mater. Sol. Cell , 2011, 95(6):1437-1440.
RIEDEL W, TANG Y, OHM W, et al .. Effect of initial galvanic nucleation on morphological and optical properties of ZnO nanorod arrays[J]. Thin Solid Films , 2015, 574:177-183.
GUO L D, TANG Y, CHIANG F K, et al .. Density-controlled growth and passivation of ZnO nanorod arrays by electrodeposition[J]. Thin Solid Films , 2017, 638:426-432.
TANG Y, GUO L D, ZHANG Z G, et al .. Aluminium doping and optical property control of electrodeposited zinc oxide nanorods induced by ammonium nitrate[J]. Opt. Precision Eng ., 2015, 23(5):1288-1296. (in Chinese)
TANG Y, CHEN J, GREINER D, et al .. Fast growth of high work function and high-quality ZnO nanorods from an aqueous solution[J]. J. Phys. Chem . C, 2011, 115(13):5239-5243.
MAHAMUNI S, BORGOHAIN K, BENDRE B S, et al .. Spectroscopic and structural characterization of electrochemically grown ZnO quantum dots[J]. J. Appl. Phys ., 1999, 85(5):2861-2865.
Optical Band Gap Blue Shift and Stokes Shift in Al-doped ZnO Nanorods by Electrodeposition
High Performance Photomultiplication-type Organic Photodetectors Based on Small-molecule Semiconductor IEICO
Tunable Emission Colours from Liquid Crystal/ZnO Nanocomposites
ZnO Based Recyclable Photocatalyst in The Air
Structure and Resistive Switching Behaviors of Zn1-xCuxO Films Derived by Electrophoretic Deposition
Related Author
TANG Yang
CHEN Jie
Jian-bin WANG
Xiao-sheng TANG
Bi ZHOU
Xia-hui ZENG
Hua-liang YU
Ying-wu ZHOU
Related Institution
National Institute of Clean-And-Low-Carbon Energy, Beijing 102211, China
College of Physics&Electronics Information Engineering, Minjiang University
College of Optoelectronic Engineering, Chongqing University
School of Electronic and Electrical Engineering, Nanyang Institute of Technology
State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China