Research on advanced methods of graphene nano-trimming is very important for graphene-based electronic and optical devices. In this paper
the inverse opal structure is fabricated by the template method
and the inverse opal nanonet structure is used to perform nano-cutting of graphene by photocatalytic reduction of graphene oxide. Scanning electron microscopy and infrared spectroscopy characterization are applied to study the electrical properties of graphene after cutting. Experiments show that the reaction time and the size of the colloidal particles will affect the period and neck width of the graphene oxide after cutting
thereby affecting the electrical properties of the graphene oxide after reduction. It is a feasible method to use nano-network structure to cut graphene nano-cuts. The properties of the cuts can be controlled by controlling the template size and reaction conditions.
关键词
Keywords
references
GEIM A K. Graphene:status and prospects[J]. Science, 2009,324(5934):1530-1534.
WANG X,ZHI L J,MLLEN K. Transparent,conductive graphene electrodes for dye-sensitized solar cells[J]. Nano Lett., 2008,8(1):323-327.
LI X S,ZHU Y W,CAI W W,et al.. Transfer of large-area graphene films for high-performance transparent conductive electrodes[J]. Nano Lett., 2009,9(12):4359-4363.
WANG Y,SHAO Y Y,MATSON D W,et al.. Nitrogen-doped graphene and its application in electrochemical biosensing[J]. ACS Nano, 2010,4(4):1790-1798.
CASTRO E V,NOVOSELOV K S,MOROZOV S V,et al.. Biased bilayer graphene:semiconductor with a gap tunable by the electric field effect[J]. Phys. Rev. Lett., 2007, 99(21):216802-1-4.
MIKHAILOV S A. Theory of the giant plasmon-enhanced second-harmonic generation in graphene and semiconductor two-dimensional electron systems[J]. Phys. Rev. B, 2011,84(4):045432-1-9.
BAE S,KIM H,LEE Y,et al.. Roll-to-roll production of 30 inch graphene films for transparent electrodes[J]. Nat. Nanotechnol., 2010,5(8):574-578.
NOVOSELOV K S,FAL'KO V I,COLOMBO L,et al.. A roadmap for graphene[J]. Nature, 2012,490(7419):192-200.
HAN T H,LEE Y,CHOI M R,et al.. Extremely efficient flexible organic light-emitting diodes with modified graphene anode[J]. Nat. Photon., 2012,6(2):105-110.
LIN Y M,DIMITRAKOPOULOS C,JENKINS K A,et al.. 100 GHz transistors from wafer-scale epitaxial graphene[J]. Science, 2010,327(5966):662-1-1.
SUN Z P,HASAN T,TORRISI F,et al.. Graphene mode-locked ultrafast laser[J]. ACS Nano, 2010,4(2):803-810.
MUELLER T,XIA F N,AVOURIS P. Graphene photodetectors for high-speed optical communications[J]. Nat. Photon., 2010,4(5):297-301.
LIU M,YIN X B,ULIN-AVILA E,et al.. A graphene-based broadband optical modulator[J]. Nature, 2011,474(7349):64-67.
YANG J,GUNASEKARAN S. Electrochemically reduced graphene oxide sheets for use in high performance supercapacitors[J]. Carbon, 2013,51:36-44.
LIAN P C,ZHU X F,LIANG S Z,et al.. Large reversible capacity of high quality graphene sheets as an anode material for lithium-ion batteries[J]. Electrochim. Acta, 2010,55(12):3909-3914.
BERGER C,SONG Z M,LI X B,et al.. Electronic confinement and coherence in patterned epitaxial graphene[J]. Science, 2006,312(5777):1191-1196.
WANG X R,OUYANG Y J,JIAO L Y,et al.. Graphene nanoribbons with smooth edges behave as quantum wires[J]. Nat. Nanotechnol., 2011,6(9):563-567.
LIU L,ZHANG Y L,WANG W L,et al.. Nanosphere lithography for the fabrication of ultranarrow graphene nanoribbons and on-chip bandgap tuning of graphene[J]. Adv. Mater., 2011,23(10):1246-1251.
WEITZ R T,ALLEN M T,FELDMAN B E,et al.. Broken-symmetry states in doubly gated suspended bilayer graphene[J]. Science, 2010,330(6005):812-816.
SON Y W,COHEN M L,LOUIE S G. Energy gaps in graphene nanoribbons[J]. Phys. Rev. Lett., 2006,97(21):216803.
CHEN Z H,LIN Y M,ROOKS M J,et al.. Graphene nano-ribbon electronics[J]. Phys. E, 2007,40(2):228-232.
PONOMARENKO L A,SCHEDIN F,KATSNELSON M I,et al.. Chaotic Dirac billiard in graphene quantum dots[J]. Science, 2008,320(5874):356-358.
ZHANG L M,DIAO S,NIE Y F,et al.. Photocatalytic patterning and modification of graphene[J]. J. Am. Chem. Soc., 2011,133(8):2706-2713.
AKHAVAN O. Graphene nanomesh by ZnO nanorod photocatalysts[J]. ACS Nano, 2010,4(7):4174-4180.
SHI Z W,YANG R,ZHANG L C,et al.. Patterning graphene with zigzag edges by self-aligned anisotropic etching[J]. Adv. Mater., 2011,23(27):3061-3065.
SAFRON N S,BREWER A S,ARNOLD M S. Semiconducting two-dimensional graphene nanoconstriction arrays[J]. Small, 2011,7(4):492-498.
KIM T Y,KWON S W,PARK S J,et al.. Self-organized graphene patterns[J]. Adv. Mater., 2011,23(24):2734-2738.
SINITSKII A,TOUR J M. Patterning graphene through the self-assembled templates:toward periodic two-dimensional graphene nanostructures with semiconductor properties[J]. J. Am. Chem. Soc., 2010,132(42):14730-14732.
ZHOU Y,BAO Q L,VARGHESE B,et al.. Microstructuring of graphene oxide nanosheets using direct laser writing[J]. Adv. Mater., 2010,22(1):67-71.
ZHANG Y H,TANG Z R,FU X Z,et al.. TiO2-graphene nanocomposites for gas-phase photocatalytic degradation of volatile aromatic pollutant:is TiO2-graphene truly different from other TiO2-garbon composite materials?[J]. ACS Nano, 2010,4(12):7303-7314.
ZHU Y W,MURALI S,CAI W W,et al.. Graphene and graphene oxide:synthesis,properties,and applications[J]. Adv. Mater., 2010,22(35):3906-3924.