浏览全部资源
扫码关注微信
1. 安徽理工大学 测绘学院, 安徽 淮南 232001
2. 安徽理工大学 地球与环境学院, 安徽 淮南 232001
Received:09 July 2019,
Revised:17 August 2019,
Published Online:05 December 2019,
Published:05 December 2019
移动端阅览
夏可, 张世文, 沈强等. 基于熵值组合模型的矿业复垦土壤重金属高光谱反演[J]. 发光学报, 2019,40(12): 1563-1573
XIA Ke, ZHANG Shi-wen, SHEN Qiang etc. Heavy Metal Hyperspectral Inversion in Mining Reclamation Soil Based on Entropy Value Combination Model[J]. Chinese Journal of Luminescence, 2019,40(12): 1563-1573
夏可, 张世文, 沈强等. 基于熵值组合模型的矿业复垦土壤重金属高光谱反演[J]. 发光学报, 2019,40(12): 1563-1573 DOI: 10.3788/fgxb20194012.1563.
XIA Ke, ZHANG Shi-wen, SHEN Qiang etc. Heavy Metal Hyperspectral Inversion in Mining Reclamation Soil Based on Entropy Value Combination Model[J]. Chinese Journal of Luminescence, 2019,40(12): 1563-1573 DOI: 10.3788/fgxb20194012.1563.
探讨组合模型在土壤重金属含量高光谱估算中的可行性,以四川古蔺工矿废弃地复垦土壤为研究对象,采集样品并测得重金属含量(Cd、Cr、Ni、As和Hg)和光谱信息;对土壤光谱进行预处理,探索响应波段;利用PLS、ANN和RF构建单一估测模型;利用熵值法进行较优模型组合。结果表明,4种光谱预处理技术对光谱与重金属含量之间的相关性均有不同程度的提升;单一预测模型MSC-RF模型效果最优,可最大程度对重金属含量进行预测;通过熵值法构建的组合预测模型较单一预测模型效果有所提升,验证集
R
2
最高达到0.91;表明组合模型能够较大限度利用多种单个模型的样本信息,减少单个模型中随机因素的影响,增强模型的稳定性,对矿业废弃地复垦土壤重金属含量的预测具有更好的发挥作用。
This paper was aiming to explore the feasibility of the combined model of hyperspectra on soil heavy metal content. Taking the reclaimed soil in Gulin
Sichuan Province as the research object
the samples were collected and the contents of heavy metals (Cd
Cr
Ni
As and Hg) and spectral information were measured. The soil spectrum was preprocessed to explore the response band; PLS
ANN and RF were used to construct a single estimation model
and entropy method was used for better model combination. The results showed that the correlation between heavy metal content and spectrum was improved by four kinds of spectral pretreatment techniques. The single prediction model MSC-RF had the best effect and could predict the heavy metal content to the maximum extent. Compared with the single prediction model
the combined prediction model constructed by the entropy value method has an improved effect
and the verification set
R
2
reaches a maximum of 0.91. It was showed that the combined model could make use of sample information of multiple single models to a large extent
reduce the influence of random factors in a single model
enhance the stability of the model
and play a better role in the prediction of heavy metal content of soil in abandoned mining land.
杨金中. 2017年度新增的矿山恢复治理面积遥感调查工作顺利完成[EB/OL].(2018-08-23)[2019-4-20]. http:/www.agrs.cgs.gov.cn/jryw/cgkx/201809/t20180907_466923.html. YANG J Z. 2017 Remote sensing survey of newly added mine restoration and control area was successfully completed[EB/OL].(2018-08-23)[2019-4-20]. http:/www.agrs.cgs.gov.cn/jryw/cgkx/201809/t20180907_466923.html.(in Chinese)
王维,沈润平,吉曹翔. 基于高光谱的土壤重金属铜的反演研究[J]. 遥感技术与应用, 2011,26(3):348-354. WANG W,SHEN R P,JI C X. Study on heavy metal Cu based on hyperspectral remote sensing[J]. Remote Sens. Technol. Appl., 2011,26(3):348-354. (in Chinese)
SRIVASTAVA R,SARKAR D,MUKHOPADHAYAY S S,et al.. Development of hyperspectral model for rapid monitoring of soil organic carbon under precision farming in the Indo-Gangetic Plains of Punjab,India[J]. J. Indian Soc.Remote Sens., 2015,43(4):751-759.
BABAEIAN E,HOMAEE M,MONTZKA C,et al.. Towards retrieving soil hydraulic properties by hyperspectral remote sensing[J]. Vadose Zone J., 2015,14(3):doi:10.2136/vzj2014.07.0080.
沈强,张世文,葛畅,等. 矿业废弃地重构土壤重金属含量高光谱反演[J]. 光谱学与光谱分析, 2019,39(4):1214-1221. SHEN Q,ZHANG S W,GE C,et al.. Hyperspectral inversion of heavy metal content in soils reconstituted by mining wasteland[J]. Spectrosc.Spect. Anal., 2019,39(4):1214-1221. (in Chinese)
李晋华,杨志良,王召巴,等. 近红外漫透射技术检测玉米成分[J]. 红外技术, 2013,35(11):732-736. LI J H,YANG Z L,WANG Z B,et al.. The corn content measurement with near infrared diffuse transmission[J]. Infrared Technol., 2013,35(11):732-736. (in Chinese)
李旭青,刘湘南,刘美玲,等. 水稻冠层氮素含量光谱反演的随机森林算法及区域应用[J]. 遥感学报, 2014,18(4):923-945. LI X Q,LIU X N,LIU M L,et al.. Random forest algorithm and regional applications of spectral inversion model for estimating canopy nitrogen concentration in rice[J]. J. Remote Sens., 2014,18(4):923-945. (in Chinese)
黄仁东,张海彬,杨志辉,等. 基于多准则的组合预测模型权重研究及其应用[J]. 中南大学学报(自然科学版), 2015,46(5):1778-1785. HUANG R D,ZHANG H B,YANG Z H,et al.. Research and application of multi-criteria combination forecast model[J]. J. Cen. South Univ.(Sci. Technol.), 2015,46(5):1778-1785. (in Chinese)
刘伟,赵众,袁洪福,等. 光谱多元分析校正集和验证集样本分布优选方法研究[J]. 光谱学与光谱分析, 2014,34(4):947-951. LIU W,ZHAO Z,YUAN H F,et al.. An optimal selection method of samples of calibration set and validation set for spectral multivariate analysis[J]. Spectrosc. Spect. Anal., 2014,34(4):947-951. (in Chinese)
刘桂松,郭昊淞,潘涛,等. Vis-NIR光谱模式识别结合SG平滑用于转基因甘蔗育种筛查[J]. 光谱学与光谱分析, 2014,34(10):2701-2706. LIU G S,GUO H S,PAN T,et al.. Vis-NIR spectroscopic pattern recognition combined with SG smoothing applied to breed screening of transgenic sugarcane[J]. Spectrosc.Spect. Anal., 2014,34(10):2701-2706. (in Chinese)
徐明星,吴绍华,周生路,等. 重金属含量的高光谱建模反演:考古土壤中的应用[J]. 红外与毫米波学报, 2011,30(2):109-114. XU M X,WU S H,ZHOU S L,et al.. Hyperspectral reflectance models for retrieving heavy metal content:application in the archaeological soil[J]. J. Infrared Millim. Waves., 2011,30(2):109-114. (in Chinese)
章明清,李娟,许文江,等. 早稻氮磷钾施肥类别归属的贝叶斯判别方法研究[J]. 植物营养与肥料学报, 2017,23(4):1045-1053. ZHANG M Q,LI J,XU W J,et al.. Bayesian discriminating analysis on category attribution of nitrogen,phosphorus and potassium fertilization for early rice[J]. J. Plant Nutr. Fertil., 2017,23(4):1045-1053. (in Chinese)
钟杰. 光谱校正方法研究及其在土壤检测的应用[D]. 广州:暨南大学, 2018. ZHONG J. Research on Spectral Correction Methods and its Application in Soil Detection[D]. Guangzhou:Ji'nan University, 2018. (in Chinese)
尼加提卡斯木,师庆东,王敬哲,等. 基于高光谱特征和偏最小二乘法的春小麦叶绿素含量估算[J]. 农业工程学报, 2017,33(22):208-216. KASIM N,SHI Q D,WANG J Z,et al.. Estimation of spring wheat chlorophyll content based on hyperspectral features and PLSR model[J]. Trans. Chin. Soc. Agric. Eng., 2017,33(22):208-216. (in Chinese)
李粉玲,常庆瑞. 基于连续统去除法的冬小麦叶片全氮含量估算[J]. 农业机械学报, 2017,48(7):174-179. LI F L,CHANG Q R. Estimation of winter wheat leaf nitrogen content based on continuum removed spectra[J]. Trans. Chin. Soc. Agric. Mach., 2017,48(7):174-179. (in Chinese)
韩兆迎,朱西存,王凌,等. 基于连续统去除法的苹果树冠SPAD高光谱估测[J]. 激光与光电子学进展, 2016,53(2):023001-1-10. HAN Z Y,ZHU X C,WANG L,et al.. Hyperspectral evaluation of SPAD value of apple tree canopy based on continuum-removed method[J]. Laser Optoelect.Prog., 2016,53(2):023001-1-10. (in Chinese)
杨平,姚明印,黄林,等. LIBS检测污染马铃薯中的Pb及偏最小二乘定量分析模型[J]. 光电子激光, 2015,26(1):141-148. YANG P,YAO M Y,HUANG L,et al.. Detection of Pb in potato by LIBS and the partial least square quantity analysis model[J]. J. Optoelect. Laser, 2015,26(1):141-148. (in Chinese)
陈元鹏,张世文,罗明,等. 基于高光谱反演的复垦区土壤重金属含量经验模型优选[J]. 农业机械学报, 2019,50(1):170-179. CHEN Y P,ZHANG S W,LUO M,et al.. Empirical model optimization of hyperspectral inversion of heavy metal content in reclamation area[J]. Trans. Chin. Soc. Agric. Mach., 2019,50(1):170-179. (in Chinese)
PAN L Q,ZHANG Q,ZHANG W,et al.. Detection of cold injury in peaches by hyperspectral reflectance imaging and artificial neural network[J]. Food Chem., 2016,192:134-141.
李盛芳,贾敏智,董大明. 随机森林算法的水果糖分近红外光谱测量[J]. 光谱学与光谱分析, 2018,38(6):1766-1771. LI S F,JIA M Z,DONG D M. Fast measurement of sugar in fruits using near infrared spectroscopy combined with random forest algorithm[J]. Spectrosc.Spect. Anal., 2018,38(6):1766-1771. (in Chinese)
CARRANZA E J M,LABORTE A G. Random forest predictive modeling of mineral prospectivity with small number of prospects and data with missing values in Abra (Philippines)[J]. Comput. Geosci., 2015,74:60-70.
刘玉成. 熵法确定权重的地基沉降组合预测模型[J]. 中国科技论文在线, 2010,5(11):875-878. LIU Y C. A combined prediction model for foundation subsidence using the entropy weight method[J]. Sciencepap. Online, 2010,5(11):875-878. (in Chinese)
王顺利,尚丽平,李占锋,等. 多元散射校正在荧光谱分析中的应用研究[J]. 光散射学报, 2013,25(2):187-191. WANG S L,SHANG L P,LI Z F,et al.. Multiplicative scatter correction in the application of fluorescence analysis[J]. J. Light Scatt., 2013,25(2):187-191. (in Chinese)
周倩倩,丁建丽,杨爱霞,等. 基于实测高光谱和电磁感应的绿洲土壤含水量估测[J]. 干旱区资源与环境, 2018,32(3):152-157. ZHOU Q Q,DING J L,YANG A X,et al.. Estimation of soil moisture spatial distribution based on measured spectral and electromagnetic induction instruments in the arid oasis[J]. J. Arid Land Resour. Environ., 2018,32(3):152-157. (in Chinese)
谢文,赵小敏,郭熙,等. 基于组合模型的庐山森林土壤有效铁光谱间接反演研究[J]. 土壤学报, 2017,54(3):601-612. XIE W,ZHAO X M,GUO X,et al.. Composite-model-based indirect reversion of soil available iron spectrum of forest soil in Lushan[J]. Acta Pedol. Sinica, 2017,54(3):601-612. (in Chinese)
陈华友. 熵值法及其在确定组合预测权系数中的应用[J]. 安徽大学学报(自然科学版), 2003,27(4):1-6. CHEN H Y. Entropy method and application to determine weights of combination forecasting[J]. J. Anhui Univ.(Nat. Sci.), 2003,27(4):1-6. (in Chinese)
0
Views
235
下载量
4
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution