浏览全部资源
扫码关注微信
南宁师范大学 化学与材料学院, 广西天然高分子化学与物理重点实验室, 广西 南宁 530001
Received:14 June 2019,
Revised:24 August 2019,
Published Online:05 December 2019,
Published:05 December 2019
移动端阅览
于淑娟, 袁广志, 汪丰等. 壳聚糖衍生物基聚合物碳点对Pd<sup>2+</sup>的传感性能[J]. 发光学报, 2019,40(12): 1546-1553
YU Shu-juan, YUAN Guang-zhi, WANG Feng etc. Sensing Properties of Chitosan Derivatives-based Polymer Carbon Dots to Pd<sup>2+</sup>[J]. Chinese Journal of Luminescence, 2019,40(12): 1546-1553
于淑娟, 袁广志, 汪丰等. 壳聚糖衍生物基聚合物碳点对Pd<sup>2+</sup>的传感性能[J]. 发光学报, 2019,40(12): 1546-1553 DOI: 10.3788/fgxb20194012.1546.
YU Shu-juan, YUAN Guang-zhi, WANG Feng etc. Sensing Properties of Chitosan Derivatives-based Polymer Carbon Dots to Pd<sup>2+</sup>[J]. Chinese Journal of Luminescence, 2019,40(12): 1546-1553 DOI: 10.3788/fgxb20194012.1546.
以柠檬酸与壳聚糖为主要原料,以1-乙基-(3-二甲基氨基丙基)碳酰二亚胺盐酸盐(EDC)和N-羟基琥珀酰亚胺(NHS)为偶合剂,合成了一种壳聚糖衍生物(CS-g-CA)。然后将CS-g-CA与掺杂试剂N-(2-羟乙基)-乙二胺通过水热法合成了壳聚糖衍生物聚合物碳点(P(CS-g-CA)Ds)。采用荧光光谱、紫外光谱、透射电镜对P(CS-g-CA)Ds进行了表征和性能测试。结果表明该聚合物碳点具有良好的荧光性能,有较高的量子产率(54.7%)和较长的荧光寿命(13.12 ns)。将P(CS-g-CA)Ds应用于金属离子检测中,发现P(CS-g-CA)Ds对Pd
2+
有良好的选择性,其检测极限为63.3 nmol/L。通过紫外吸收光谱、荧光寿命以及不同温度下猝灭常数的测定研究了Pd
2+
对P(CS-g-CA)Ds的荧光猝灭机制,结果均表明其猝灭机制为静态猝灭。
In this paper
a chitosan derivative(CS-g-CA) was synthesized by using citric acid and chitosan as main raw materials
N-hydroxysuccinimide(NHS) and N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride(EDC) as coupling agents. Then
the chitosan derivative polymer dot fluorescent material P(CS-g-CA) Ds was synthesized by hydrothermal method using CS-g-CA and the doping reagent N-(2-hydroxyethyl)-ethylenediamine. The P(CS-g-CA)Ds was characterized by fluorescence
ultraviolet spectroscopy(UV)
transmission electron microscopy
photoluminescence spectra.The quantum yield and fluorescence lifetime of the test P(CS-g-CA)Ds were 54.7% and 13.12 ns
respectively
indicating that the polymer carbon dots have good fluorescence properties. When P(CS-g-CA)Ds was applied to metal ion detection
it was found that P(CS-g-CA)Ds had good selectivity to Pd
2+
with a detection limit of 63.3 nmol/L. The fluorescence quenching mechanism of Pd
2+
on P(CS-g-CA)Ds was studied by UV spectroscopy
fluorescence lifetime and quenching constant at different temperatures. The results show that the quenching mechanism is static quenching.
CHEN X Q,LI H D,JIN L Y,et al.. A ratiometric fluorescent probe for palladium detection based on an allyl carbonate group functionalized hemicyanine dye[J]. Tetrahedron Lett., 2010,55(15):2537-2540.
SHARMA R K,PANDEY A,GULATI S,et al.. An optimized procedure for preconcentration,determination and on-line recovery of palladium using highly selective diphenyldiketone-monothiosemicarbazone modified silica gel[J]. J. Hazard. Mater., 2012,209-210:285-292.
AWUAL R,HASAN M,ZN H. Organic-inorganic based nano-conjugate adsorbent for selective palladium(Ⅱ) detection,separation and recovery[J]. Chem. Eng. J., 2015,259:611-619.
ZHAO Y Z,LI X M,SCHECHTER J M,et al.. Revisiting the oxidation peak in the cathodic scan of the cyclic voltammogram of alcohol oxidation on noble metal electrodes[J]. RSC Adv., 2016,6(7):5384-5390.
VELMURUGAN M,THIRUMALRAJ B,CHEN S M,et al.. Development of electrochemical sensor for the determination of palladium ions (Pd2+) using flexible screen printed un-modified carbon electrode[J]. J. Colloid Interface Sci., 2017,485:123-128.
SHULTZ M D,LASSIG J P,GOOCH M G,et al.. Palladium-a new inhibitor of cellulase activities[J]. Biochem. Biophys. Res. Commun., 1995,209(3):1046-1052.
MERGET R,ROSNER G. Evaluation of the health risk of platinum group metals emitted from automotive catalytic converters[J]. Sci. Total Environ., 2001,270(1-3):165-173.
GARRETT C E,PRASAD K. The art of meeting palladium specifications in active pharmaceutical ingredients produced by Pd-catalyzed reactions[J]. Adv. Synth. Catal., 2004,346(8):889-900.
JI Q M,HONMA I,PAEK S M,et al.. Layer-by-layer films of graphene and ionic liquids for highly selective gas sensing[J]. Angew. Chem. Int. Ed., 2010,49(50):9737-9739.
LENG Y K,WU W J,LI L,et al.. Magnetic/fluorescent barcodes based on cadmium-free near-infrared-emitting quantum dots for multiplexed detection[J]. Adv. Funct. Mater., 2016,26(42):7581-7589.
JO D Y,KIM D,KIM J H,et al.. Tunable white fluorescent copper gallium sulfide quantum dots enabled by Mn doping[J]. ACS Appl. Mater. Interfaces, 2016,8(19):12291-12297.
BUCELLA S G,LUZIO A,GANN E,et al.. Macroscopic and high-throughput printing of aligned nanostructured polymer semiconductors for MHz large-area electronics[J]. Nat. Commun., 2015,6:8394-1-10.
LI J,LIN J,HUANG Y,et al.. Organic fluorescent dyes supported on activated boron nitride:a promising blue light excited phosphors for high-performance white light-emitting diodes[J]. Sci. Rep., 2015,5:8492-1-7.
WANG C X,WU J P,JIANG K L,et al.. Stable Ag nanoclusters-based nano-sensors:rapid sonochemical synthesis and detecting Pb2+ in living cells[J]. Sens. Actuators B:Chem., 2017,238:1136-1143.
WANG H,SUN C,CHEN X R,et al.. Excitation wavelength independent visible color emission of carbon dots[J]. Nanoscale, 2017,9(5):1909-1915.
JIANG K L,WU J P,WU Q,et al.. Stable fluorescence of green-emitting carbon nanodots as a potential nanothermometer in biological media[J]. Part. Part. Syst. Charact., 2017,34(2):1600197.
FENG T,AI X Z,ONG H,et al.. Dual-responsive carbon dots for tumor extracellular microenvironment triggered targeting and enhanced anticancer drug delivery[J]. ACS Appl. Mater. Interfaces, 2016,8(29):18732-18740.
YANG Y H,CUI J H,ZHENG M T,et al.. One-step synthesis of amino-functionalized fluorescent carbon nanoparticles by hydrothermal carbonization of chitosan[J]. Chem. Commun., 2012,48(3):380-382.
XIAO D L,YUAN D H,HE H,et al.. Microwave-assisted one-step green synthesis of amino-functionalized fluorescent carbon nitride dots from chitosan[J]. Luminescence, 2013,28(4):612-615.
王霞,吴文承,袁俊超,等. 微波原位法制备碳点/壳聚糖荧光复合物及其应用研究[J]. 高分子学报, 2016(2):226-232. WANG X,WU W C,YUAN J C,et al.. In situ construction of fluorescent carbon dots/chitosan composites with straightforward applications[J]. Acta Polym. Sinica, 2016(2):226-232. (in Chinese)
汪雪琴,洪碧云,杨旋,等. 壳聚糖碳点的水热法制备及其对金属离子的选择性研究[J]. 发光学报, 2019,40(3):289-297. WANG X Q,HONG B Y,YANG X,et al.. Hydrothermal preparation of chitosan carbon dots and their selectivity to metal ions[J]. Chin. J. Lumin., 2019,40(3):289-297. (in Chinese)
于淑娟,汪丰,罗振静,等. 壳聚糖基聚合物点荧光材料的合成及其对纸张的抗紫外老化性能[J]. 发光学报, 2017,38(11):1443-1449. YU S J,WANG F,LUO Z J, et al.. Synthesis of chitosan-based polymer carbon dots fluorescent materials and their UV aging resistance properties for paper[J]. Chin. J. Lumin., 2017,38(11):1443-1449. (in Chinese)
HUANG H,WENG Y H,ZHENG L H,et al.. Nitrogen-doped carbon quantum dots as fluorescent probe for "off-on" detection of mercury ions,L-cysteine and iodide ions[J]. J. Colloid Interface Sci., 2017,506:373-378.
ZENG T,HU X Q,WU H,et al.. Microwave assisted synthesis and characterization of a novel bio-based flocculant from dextran and chitosan[J]. Int. J. Biol. Macromol., 2019,131:760-768.
OH B H,KIM A R,YOO D J. Profile of extended chemical stability and mechanical integrity and high hydroxide ion conductivity of poly(ether imide) based membranes for anion exchange membrane fuel cells[J]. Int. J. Hydrogen Energy, 2019,44(8):4281-4292.
ZUO P L,LU X H,SUN Z G,et al.. A review on syntheses,properties,characterization and bioanalytical applications of fluorescent carbon dots[J]. Microchim. Acta, 2016,183(2):519-542.
CHOI Y,THONGSAI N,CHAE A,et al.. Microwave-assisted synthesis of luminescent and biocompatible lysine-based carbon quantum dots[J]. J. Ind. Eng. Chem., 2017,47:329-335.
NIE H,LI M J,LI Q S,et al.. Carbon dots with continuously tunable full-color emission and their application in ratiometric pH sensing[J]. Chem. Mater., 2014,26(10):3104-3112.
ZENG Y W,MA D K,WANG W,et al.. N,S co-doped carbon dots with orange luminescence synthesized through polymerization and carbonization reaction of amino acids[J]. Appl. Surf. Sci., 2015,342:136-143.
HU S L,TRINCHI A,ATKIN P,et al.. Tunable photoluminescence across the entire visible spectrum from carbon dots excited by white light[J]. Angew. Chem. Int. Edit., 2015,54(10):2970-2974.
GU J J,WANG W N,ZHANG Q H,et al.. Synthesis of fluorescent carbon nanoparticles from polyacrylamide for fast cellular endocytosis[J]. RSC Adv., 2013,3(36):15589-15591.
GUPTA A,KUMA N. A review of mechanisms for fluorescent "turn-on" probes to detect Al3+ ions[J]. RSC Adv., 2016,6(108):106413-106434.
ZHOU L,LIN Y H,HUANG Z Z,et al.. Carbon nanodots as fluorescence probes for rapid,sensitive,and label-free detection of Hg2+ and biothiols in complex matrices[J]. Chem. Commun., 2012,48(8):1147-1149.
XIA Y S,ZHU C Q. Use of surface-modified CdTe quantum dots as fluorescent probes in sensing mercury (Ⅱ)[J]. Talanta, 2008,75(1):215-221.
GORE A H,GUNJAL D B,KOKATE M R,et al.. Highly selective and sensitive recognition of cobalt(Ⅱ) ions directly in aqueous solution using carboxyl-functionalized CdS quantum dots as a naked eye colorimetric probe:applications to environmental analysis[J]. ACS Appl. Mater. Interfaces, 2012,4(10):5217-5226.
CHEN J,LI Y,LV K,et al.. Cyclam-functionalized carbon dots sensor for sensitive and selective detection of copper(Ⅱ) ion and sulfide anion in aqueous media and its imaging in live cells[J]. Sen. Actuators B:Chem., 2016,224:298-306.
LIU Y S,ZHAO Y N,ZHANG Y Y. One-step green synthesized fluorescent carbon nanodots from bamboo leaves for copper(Ⅱ) ion detection[J]. Sens. Actuators B:Chem., 2014,196:647-652.
HUANG S,YANG E L,YAO J D,et al.. Red emission nitrogen,boron,sulfur co-doped carbon dots for "on-off-on" fluorescent mode detection of Ag+ ions and L-cysteine in complex biological fluids and living cells[J]. Anal. Chim. Acta, 2018,1035:192-202.
0
Views
169
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution