LIN Jie, LIU Xing-yuan, QU Song-nan. Low Threshold Polymer Lasers Under Optical Pumping[J]. Chinese Journal of Luminescence, 2019,40(11): 1434-1438 DOI: 10.3788/fgxb20194011.1434.
Low Threshold Polymer Lasers Under Optical Pumping
High threshold is the main obstacle to achieving direct electrically pumped polymer lasers. In this paper
high-performance blue light material
polyfluorene(PFO) is used as a laser gain medium. A planar optical microcavity with appropriate structure is designed based on cavity quantum electrodynamics principle. The self-absorption of active layer material is further reduced by lowing the thickness of polymer layer. Optical microcavity is constructed by DBRs with two different material system. The extra optical loss is cut down in the preparation process of top DBR
and the optical resonator with low loss and high
Q
value is finally obtained. An optically pumped low threshold polymer laser with a peak wavelength of 443 nm and a threshold of only 30 mW/cm
2
is realized by effectively controlling the spontaneous emission and stimulated emission characteristics of PFO.
关键词
Keywords
references
LUPTON J M. Over the rainbow[J]. Nature, 2008,453(7194):459-460.
SAMUEL I D W. Laser physics:fantastic plastic[J]. Nature, 2004,429(6993):709-710.
SAMUEL I D W,NAMDAS E B,TURNBULL G A. How to recognize lasing[J]. Nat. Photon., 2009,3(10):546-549.
TESSLER N,DENTON G J,FRIEND R H. Lasing from conjugated-polymer microcavities[J]. Nature, 1996,382(6593):695-697.
KOSCHORRECK M,GEHLHAAR R,LYSSENKO V G,et al.. Dynamics of a high-Q vertical-cavity organic laser[J]. Appl. Phys. Lett., 2005,87(18):181108-1-4.
GATHER M C,YUN S H. Bio-optimized energy transfer in densely packed fluorescent protein enables near-maximal luminescence and solid-state lasers[J]. Nat. Commun., 2014,5:5722-1-18.
KIM D H,D'ALO A,CHEN X K,et al.. High-efficiency electroluminescence and amplified spontaneous emission from a thermally activated delayed fluorescent near-infrared emitter[J]. Nat. Photon., 2018,12(2):98-104.
JIANG Y,LV P,PAN J Q,et al.. Low-threshold organic semiconductor lasers with the aid of phosphorescent Ir(Ⅲ) complexes as triplet sensitizers[J]. Adv. Funct. Mater., 2019,29(19):1806719.
LIU X Y,LI H B,SONG C Y,et al.. Microcavity organic laser device under electrical pumping[J]. Opt. Lett., 2009,34(4):503-505.
张镭,李颜涛,林杰,等. 基于Alq:DCJTI薄膜的光泵浦650 nm微腔激光[J]. 发光学报, 2015,36(9):1059-1063. ZHANG L,LI Y T,LIN J,et al.. Microcavity lasing at 650 nm from Alq:DCJTI film under optical pumping[J]. Chin. J. Lumin., 2015,36(9):1059-1063. (in Chinese)
LIN J,HU Y S,LV Y,et al.. Light gain amplification in microcavity organic semiconductor laser diodes under electrical pumping[J]. Sci. Bull., 2017,62(24):1637-1638.
林杰,曲松楠,褚明辉,等. 全介质镜微腔的结构设计与发光特性的模拟[J]. 发光学报, 2013,34(3):329-333. LIN J,QU S N,CHU M H,et al.. Simulation of luminescence properties and structure design of microcavity based on two dielectric mirrors[J]. Chin. J. Lumin., 2013,34(3):329-333. (in Chinese)
KUEHNE A J C,GATHER M V. Organic lasers:recent developments on materials,device geometries,and fabrication techniques[J]. Chem. Rev., 2016,116(21):12823-12864.