浏览全部资源
扫码关注微信
1. 蚌埠学院 理学院, 硅基新材料工程技术研究中心, 安徽 蚌埠 233030
2. 中国科学院上海硅酸盐研究所 透明光功能无机材料重点实验室 上海,201899
3. 中国科学院大学 材料与光电研究中心 北京,100049
Received:17 June 2019,
Revised:25 July 2019,
Published:05 November 2019
移动端阅览
王晴晴, 石云, 冯亚刚等. 太阳光泵浦Cr,Nd:YAG透明陶瓷的光谱特性和激光参数[J]. 发光学报, 2019,40(11): 1365-1372
WANG Qing-qing, SHI Yun, FENG Ya-gang etc. Spectral Characteristics and Laser Parameters of Solar Pumped Cr,Nd: YAG Transparent Ceramics[J]. Chinese Journal of Luminescence, 2019,40(11): 1365-1372
王晴晴, 石云, 冯亚刚等. 太阳光泵浦Cr,Nd:YAG透明陶瓷的光谱特性和激光参数[J]. 发光学报, 2019,40(11): 1365-1372 DOI: 10.3788/fgxb20194011.1365.
WANG Qing-qing, SHI Yun, FENG Ya-gang etc. Spectral Characteristics and Laser Parameters of Solar Pumped Cr,Nd: YAG Transparent Ceramics[J]. Chinese Journal of Luminescence, 2019,40(11): 1365-1372 DOI: 10.3788/fgxb20194011.1365.
太阳光泵浦激光器可将太阳光直接转化为激光,在空间太阳能发电站、深海等领域有着极大的应用前景,而Cr,Nd:YAG是一种很有潜力的太阳光泵浦激光介质。本文以高纯Y
2
O
3
、-Al
2
O
3
、Nd
2
O
3
、Cr
2
O
3
粉体作为原料,采用固相反应法结合真空烧结技术制备了高光学质量的0.1% Cr,1.0% Nd:YAG透明陶瓷,并研究了其光谱特性和激光参数。根据太阳辐照光谱和Cr,Nd:YAG陶瓷的吸收和发射光谱,计算了不同条件下Cr,Nd:YAG陶瓷激光器的泵浦率、阈值太阳聚光比、有效发射截面、饱和光强和阈值输入功率等激光参数。研究发现0.1% Cr,1.0% Nd:YAG陶瓷(厚度为1.0 mm)在370 nm和1 064 nm处的直线透过率分别为81.5%和84.0%,晶胞密度为4.57 g/cm
3
,光学散射损耗为1.4% cm
-1
,吸收带内的太阳辐照度约是太阳常数的42%。上述研究结果表明Cr,Nd:YAG陶瓷是理想的太阳光泵浦激光介质,可通过优化聚光系统、泵浦方式和陶瓷尺寸获得高功率激光输出。
Solar pump laser can directly convert sunlight into laser
which has great application prospect in space solar power station
deep sea and other fields. Cr
Nd:YAG is a kind of solar pump laser medium with great potential. 0.1%Cr
1.0%Nd:YAG transparent ceramics with high optical quality were fabricated by solid-state reactive sintering using high-purity Y
2
O
3
-Al
2
O
3
Nd
2
O
3
and Cr
2
O
3
powders as raw materials. The spectral characteristics and laser parameters of 0.1%Cr
1.0%Nd:YAG ceramics were studied in this paper. According to the solar irradiance spectrum
the absorption and fluorescence spectra of Cr
Nd:YAG ceramics
the laser parameters of Cr
Nd:YAG ceramic laser
such as pump rate
threshold solar concentration ratio
effective emission cross section
saturation intensity
and the threshold input power were calculated under different conditions. The study found that the in-line transmittance of 0.1%Cr
1.0%Nd:YAG ceramics with the thickness of 1.0 mm reaches 81.5% at 370 nm and 84.0% at 1 064 nm
the cell density is 4.57 g/cm
3
and the optical scattering loss is about 1.4% cm
-1
the solar irradiance in the absorption band is about 42% of the solar constant. The results show that Cr
Nd:YAG ceramics are ideal laser media for solar pumping. High power laser output can be obtained by optimizing the focusing system
pumping mode and ceramic size.
谢会东,谭玉荣,苏彬彬,等. La2-x-yMgTiO6:xDy3+,yEu3+白色荧光粉的荧光性能及能量传递[J]. 发光学报, 2019,40(6):713-718. XIE H D,TAN Y R,SU B B,et al.. Luminescent properties and energy transfer of La2-x-yMgTiO6:xDy3+,yEu3+ white phosphors[J]. Chin. J. Lumin., 2019,40(6):713-718. (in Chinese)
芦宇. 阳光泵浦Cr/Nd:YAG陶瓷激光研究[D]. 哈尔滨:哈尔滨工业大学, 2013. LU Y. Research on Solar Pumped Cr/Nd:YAG Ceramic Laser [D]. Harbin:Harbin Institute of Technology, 2013. (in Chinese)
赵长明,赵彬,何建伟. 太阳光泵浦固体激光器及其空间应用[J]. 红外与激光工程, 2006,35(S3):95-99. ZHAO C M,ZHAO B,HE J W. Solar pumped solid state lasers and its space applications[J]. Infrared Laser Eng., 2006,35(S3):95-99. (in Chinese)
赵长明. 太阳光泵浦激光器[M]. 北京:国防工业出版社, 2016. ZHAO C M. Solar Pumped Lasers [M]. Beijing:National Defense Industry Press, 2016. (in Chinese)
代雨航,李剑,张莹,等. Er,Yb:(LaLu)2O3透明陶瓷制备及上转换发光性能[J]. 发光学报, 2018,39(4):488-493. DAI Y H,LI J,ZHANG Y,et al.. Preparation of Er,Yb:(LaLu)2O3 ceramic and its upconversion luminescent properties[J]. Chin. J. Lumin., 2018,39(4):488-493. (in Chinese)
王菲,王晓华,房丹,等. 太阳光泵浦固体激光器的研究与应用[J]. 激光与红外, 2011,41(7):739-741. WANG F,WANG X H,FANG D,et al.. Research and application of solar pumped solid-state lasers[J]. Laser Infrared,2011,41(7):739-741. (in Chinese)
SHEN Z C,YU L,LU J Y,et al.. Development of solar-pumped solid-state lasers \. Proceedings of 2011 Academic International Symposium on Optoelectronics and Microelectronics Technology,Harbin,China, 2011.
WEKSLER M,SHWARTZ J. Solar-pumped solid-state lasers[J]. IEEE J. Quantum Electron., 1988,24(6):1222-1228.
王予,赵长明,杨苏辉,等. 太阳光直接抽运1064 nm激光放大器[J]. 中国激光, 2017,44(3):0301003-1-6. WANG Y,ZHAO C M,YANG S H,et al.. Solar directly pumped 1064 nm laser amplifier[J]. Chin. J. Lasers, 2017,44(3):0301003-1-6. (in Chinese)
张立伟,赵长明,杨苏辉,等. Cr,Nd:YAG陶瓷作为太阳光抽运材料的可行性研究[J]. 激光技术, 2011,35(2):193-195. ZHANG L W,ZHAO C M,YANG S H,et al.. Study on the feasibility of Cr,Nd:YAG ceramic used for solar pumped lasers[J]. Laser Technol., 2011,35(2):193-195. (in Chinese)
UCHIDA S,YABE T,SATO Y,et al.. Experimental study of solar pumped laser for magnesium-hydrogen energy cycle[J]. AIP Conf. Proc., 2006,830(1):439-446.
YAGI H,YANAGITANI T,YOSHIDA H,et al.. Highly efficient flashlamp-pumped Cr3+ and Nd3+ codoped Y3Al5O12 ceramic laser[J]. Jpn. J. Appl. Phys., 2006,45(1A):133-135.
YAGI H,YANAGITANI T,YOSHID H,et al.. The optical properties and laser characteristics of Cr3+ and Nd3+ co-doped Y3Al5O12 ceramics[J]. Opt. Laser Technol., 2007,39(6):1295-1300.
YABE T,OHKUBO T,UCHIDA S,et al.. High-efficiency and economical solar-energy-pumped laser with Fresnel lens and chromium codoped laser medium[J]. Appl. Phys. Lett., 2007,90(26):261120-1-3.
YABE T,BAGHERI B,OHKUBO T,et al.. 100 W-class solar pumped laser for sustainable magnesium-hydrogen energy cycle[J]. J. Appl. Phys., 2008,104(8):083104-1-8.
SAIKI T,MOTOKOSHI S,IMASAKI K,et al.. Effective fluorescence lifetime and stimulated emission cross-section of Nd/Cr:YAG ceramics under CW lamplight pumping[J]. Jpn. J. Appl. Phys., 2008,47(10R):7896-7902.
ENDO M. Optical characteristics of Cr3+ and Nd3+ codoped Y3Al5O12 ceramics[J]. Opt. Laser Technol., 2010,42(4):610-616.
LI J,WU Y S,PAN Y B,et al.. Solid-state-reactive fabrication of Cr,Nd:YAG transparent ceramics:the influence of raw material[J]. J. Ceram. Soc. Jpn., 2008,116(1352):572-577.
LI J,LIU W B,JIANG B X,et al.. Synthesis of nanocrystalline yttria powder and fabrication of Cr,Nd:YAG transparent ceramics[J]. J. Alloys Compd., 2012,515:49-56.
LIANG D,ALMEIDA J,GARCIA D. Comparative study of Cr:Nd:YAG and Nd:YAG solar laser performances. Proceedings of SPIE 8785, 8th Iberoamerican Optics Meeting and 11th Latin American Meeting on Optics, Lasers, and Applications,Porto,Portugal, 2013.
LU Y,SHEN Z C,LU J Y,et al.. Pumping efficiency of solar-pumped Cr/Nd:YAG ceramic rod with Fresnel lens[J]. J. Russ. Laser Res., 2013,34(2):120-128.
LIANG D,ALMEIDA J,GUILLOT E. Side-pumped continuous-wave Cr:Nd:YAG ceramic solar laser[J]. Appl. Phys. B, 2013,111(2):305-311.
OLIVEIRA M,LIANG D W,ALMEIDA J,et al.. A path to renewable Mg reduction from MgO by a continuous-wave Cr:Nd:YAG ceramic solar laser[J]. Sol. Energy Mater. Sol. Cells, 2016,155:430-435.
LIANG D W,VISTAS C R,TIBCIO B D,et al.. Solar-pumped Cr:Nd:YAG ceramic laser with 6.7% slope efficiency[J]. Sol. Energy Mater. Sol. Cells, 2018,185:75-79.
潘裕柏,李江,姜本学. 先进光功能透明陶瓷[M]. 北京:科学出版社, 2017. PAN Y B,LI J,JIANG B X. Advanced Optical Function Transparent Ceramics [M]. Beijing:Science Press, 2017. (in Chinese)
车念曾,阎达远. 辐射度学和光度学[M]. 北京:北京理工大学出版社, 1990. CHE N C,YAN D Y. Radiology and Photometry[M]. Beijing:Beijing Institute of Technology Press, 1990. (in Chinese)
0
Views
342
下载量
2
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution