浏览全部资源
扫码关注微信
1. 太原理工大学新材料界面科学与工程教育部重点实验室,山西 太原,030024
2. 重庆文理学院 新材料技术研究所微纳米光电材料与器件联合创新中心 重庆,402160
3. 太原理工大学 材料科学与工程学院,山西 太原,030024
Received:24 June 2019,
Revised:28 July 2019,
Published:05 November 2019
移动端阅览
卢国婧, 廖小青, 李璐等. 基于扭曲A-π-D-π-A构型的蓝色荧光材料的π-共轭桥与光物理特性间的关系[J]. 发光学报, 2019,40(11): 1334-1347
LU Guo-jing, LIAO Xiao-qing, LI Lu etc. Relationship Between π-conjugated Bridge and Photophysical Properties of Blue Light-emitting Fluorescent Materials with Twisting A-π-D-π-A Configuration[J]. Chinese Journal of Luminescence, 2019,40(11): 1334-1347
卢国婧, 廖小青, 李璐等. 基于扭曲A-π-D-π-A构型的蓝色荧光材料的π-共轭桥与光物理特性间的关系[J]. 发光学报, 2019,40(11): 1334-1347 DOI: 10.3788/fgxb20194011.1334.
LU Guo-jing, LIAO Xiao-qing, LI Lu etc. Relationship Between π-conjugated Bridge and Photophysical Properties of Blue Light-emitting Fluorescent Materials with Twisting A-π-D-π-A Configuration[J]. Chinese Journal of Luminescence, 2019,40(11): 1334-1347 DOI: 10.3788/fgxb20194011.1334.
蓝色荧光材料在作为有机发光器件(OLED)的蓝光发光层材料方面具有很大的商业应用潜力。本文将4-(9H-咔唑-9-基)苯胺(CzPA)作为电子给体单元、三氟甲基苯基(FMP)作为电子受体单元,通过在CzPA和FMP之间分别引入苯,9,9'-二辛基-9H-芴和双(9,9'-二辛基-9H-芴)作为-共轭桥,设计并合成了一系列基于扭曲A--D--A构型的蓝色荧光材料(CzPA-B-FMP,CzPA-F-FMP,CzPA-DF-FMP),并研究-共轭桥与材料光物理性质之间的关系。通过对材料的相关光物理性质以及电荷转移特性的详细比较,可以分析得出:CzPA和FMP之间的-共轭桥长度的增加可以增强激发态的局部激发特性,进而提高这些材料的荧光量子效率和器件的外量子效率。但是,过长的-共轭桥将导致更大的分子间共轭效应,不利于材料光物理性质的优化。
Blue light-emitting fluorescent materials have great commercial application potential as blue-light emitter for organic light-emitting devices(OLEDs). In this work
a series of blue light-emitting fluorescent materials with twisting A--D--A configuration were designed and synthesized
in which 4-(9H-carbazol-9-yl)benzeneamine(CzPA) as electron donor unit and trifluoromethylphenyl (FMP) as electron acceptor unit. To investigate the relationship between -conjugated bridge and photophysical properties
the benzene
9
9'-dioctyl-9H-fluorene and di(9
9'-dioctyl-9H-fluorene) are introduced as -conjugated bridge between CzPA and FMP
which are named as CzPA-B-FMP
CzPA-F-FMP
CzPA-DF-FMP
respectively. By comparing photophysical properties in detail
it can be concluded that combining with charge transfer characteristic
the local excitation characteristic of excited state can be enhanced with increasing length of -conjugated bridge between CzPA and FMP
which can improve the fluorescent quantum efficiency of these materials and external quantum efficiency of blue light OLED. But
too longer -conjugated units will also deteriorate photophysical properties for bigger intermolecular conjugating effect.
HEEGER A J. Light emission from semiconducting polymers:light-emitting diodes,light-emitting electrochemical cells,lasers and white light for the future[J]. Solid State Commun., 1998,107(11):673-679;
TAO P,MIAO Y Q,WANG H,et al.. High-performance organic electroluminescence:design from organic light-emitting materials to devices[J]. Chem. Record, 2019,19(8):1531-1561.
BROWN A R,PICHLER K,GREENHAM N C,et al.. Optical spectroscopy of triplet excitons and charged excitations in poly(p-phenylenevinylene) light-emitting diodes[J]. Chem. Phys., 1993,210(1-3):61-66.
ZHANG S T,YAO L,PENG Q M,et al.. Achieving a significantly increased efficiency in nondoped pure blue fluorescent OLED:a quasi-equivalent hybridized excited state[J]. Adv. Funct. Mater., 2015,25(11):1755-1762.
FRIEND R H,GYMER R W,HILMES A B,et al.. Electroluminescence in conjugated polymers[J]. Nature, 1999,397(6715):121-128.
ADACHI C,BALDO M A,THOMPSON M E,et al.. Nearly 100% internal phosphorescence efficiency in an organic light-emitting device[J]. J. Appl. Phys., 2001,90(10):5048-5051.
MA H,YIP H L,HUANG F,et al.. Interface engineering for organic electronics[J]. Adv. Funct. Mater., 2010,20(9):1371-1388.
CHO M Y,KIM S J,HAN Y D,et al.. Highly sensitive,photocontrolled,organic thin-film transistors using soluble star-shaped conjugated molecules[J]. Adv. Funct. Mater., 2008,18(19):2905-2912.
BARDSLEY J N. International OLED technology roadmap[J]. IEEE J. Sel. Top. Quantum Electron., 2004,10(1):3-9.
BALDO M A,THOMPSON M E,FORREST S R. High-efficiency fluorescent organic light-emitting devices using a phosphorescent sensitizer[J]. Nature, 2000,403(6771):750-753;
TAO P,LI W L,ZHANG J,et al.. Facile synthesis of highly efficient lepidine-based phosphorescent Iridium(Ⅲ) complexes for yellow and white organic light-emitting diodes[J]. Adv. Funct. Mater., 2016,26(6):881-894.
TAO P,MIAO Y Q,ZHANG Y B,et al.. Highly efficient thienylquinoline-based phosphorescent iridium(Ⅲ) complexes for red and white organic light-emitting diodes[J]. Org. Electron., 2017,45:293-301;
ZHENG T H,CHOY W C H. High efficiency blue organic LEDs achieved by an integrated fluorescence-interlayer-phosphorescence emission architecture[J]. Adv. Funct. Mater., 2010,20(4):648-655.
TAO P,ZHANG Y B,WANG J,et al.. Highly efficient blue phosphorescent iridium(Ⅲ) complexes with various ancillary ligands for partially solution-processed organic light-emitting diodes[J]. J. Mater. Chem. C, 2017,5(36):9306-9314;
CHI Y,CHOU P T. Transition-metal phosphors with cyclometalating ligands:fundamentals and applications[J]. Chem. Soc. Rev., 2010,39(2):638-655.
SUN Y R,GIEBINK N C,KANNO H,et al.. Management of singlet and triplet excitons for efficient white organic light-emitting devices[J]. Nature, 2006,440(7086):908-912.
CHEN B,LIU B Q,ZENG J J,et al.. Efficient bipolar blue AIE gens for high-performance nondoped blue OLEDs and hybrid white OLEDs[J]. Adv. Funct. Mater., 2018,28(40):1803369.
UOYAMA H,GOUSHI K,SHIZU K,et al.. Highly efficient organic light-emitting diodes from delayed fluorescence[J]. Nature, 2012,492(7428):234-238.
LEE I,LEE J Y. Molecular design of deep blue fluorescent emitters with 20% external quantum efficiency and narrow emission spectrum[J]. Org. Electron., 2016,29:160-164.
YU D W,ZHANG X J,WANG Z M,et al.. Theoretical investigation of the effects of various substituents on the large energy gap between triplet excited-states of anthracene[J]. RSC Adv., 2018,8(49):27979-27987.
CAI X Y,SU S J. Marching toward highly efficient,pure-blue,and stable thermally activated delayed fluorescent organic light-emitting diodes[J]. Adv. Funct. Mater., 2018,28(43):1802558.
YANG Y K,WANG S M,ZHU Y H,et al.. Thermally activated delayed fluorescence conjugated polymers with backbone-donor/pendant-acceptor architecture for nondoped OLEDs with high external quantum efficiency and low roll-off[J]. Adv. Funct. Mater., 2018,28(10):1706916.
LI W J,PAN Y Y,XIAO R,et al.. Employing~100% excitons in OLEDs by utilizing a fluorescent molecule with hybridized local and charge-transfer excited state[J]. Adv. Funct. Mater., 2014,24(11):1609-1614.
MARAGANI R,MISRA R,ROY M S,et al.. (D--A)2--D-A type ferrocenylbisthiazole linked triphenylamine based molecular systems for DSSC:synthesis,experimental and theoretical performance studies[J]. Phys. Chem. Chem. Phys., 2017,19(13):8925-8933.
LI B J,ZHOU L S,CHENG H,et al.. Dual-emissive 2-(2'-hydroxyphenyl) oxazoles for high performance organic electroluminescent devices:discovery of a new equilibrium of excited state intramolecular proton transfer with a reverse intersystem crossing process[J]. Chem. Sci., 2018,9(5):1213-1220.
LI W J,LIU D D,SHEN F Z,et al.. A twisting donor-acceptor molecule with an intercrossed excited state for highly efficient,deep-blue electroluminescence[J]. Adv. Funct. Mater., 2012,22(13):2797-2803.
KONIDENAR K,JUSTIN THOMAS K R,KUMAR D D,et al.. A new molecular design based on hybridized local and charge transfer fluorescence for highly efficient (>6%) deep-blue organic light emitting diodes[J]. Chem. Commun., 2017,53(86):11802-11805.
KAST H,MISHRA A,SCHULZ G L,et al.. Acceptor-substituted S,N-heteropentacenes of different conjugation length:structure-property relationships and solar cell performance[J]. Adv. Funct. Mater., 2015,25(22):3414-3424.
YE H,CHEN D C,LIU M,et al.. Conjugated polymers containing trifluoren-2-ylamine,trifluoren-2-ylbenzene and trifluoren-2-yltriazine for electroluminescence[J]. Polymer, 2013,54(1):162-173.
WEI Y,CHEN C T. Doubly ortho-linked cis-4,4'-Bis (diarylamino)-stilbene/fluorene hybrids as efficient nondoped,sky-blue fluorescent materials for optoelectronic applications[J]. J. Am. Chem. Soc., 2007,129(24):7478-7479.
候敏娜,吴董宇,卢国婧,等. 高激子利用率的蓝光荧光材料及其激发态性质[J]. 发光学报,2018,39(12):1659-1668. HOU M N,WU D Y,LU G J,et al.. Photophysical and excited state properties of blue fluorescent material with high exciton utilizing efficiency[J]. Chin. J. Lumin., 2018,39(12):1659-1668. (in Chinese)
ZHEN C G,DAI Y F,ZENG W J,et al.. Achieving highly efficient fluorescent blue organic light-emitting diodes through optimizing molecular structures and device configuration[J]. Adv. Funct. Mater., 2011,21(4):699-707.
CHIANG C J,KIMYONOK A,ETHERINGTON M K,et al.. Ultrahigh efficiency fluorescent single and Bi-layer organic light emitting diodes:the key role of triplet fusion[J]. Adv. Funct. Mater., 2013,23(6):739-746.
张建华,陈章福,徐小雪,等.人体静电放电对有机发光二极管的影响[J]. 发光学报, 2018,39(2):169-174. ZHANG J H,CHEN Z F,XU X X,et al.. Analysis of organic light emitting diode under electrostatic discharge stresses[J]. Chin. J. Lumin., 2018,39(2):169-174. (in Chinese)
RAVI M,SAMANTA A,RADHAKRISHNAN T P. Excited state dipole moments from an efficient analysis of solvatochromic stokes shift data[J]. J. Phys. Chem., 1994,98(37):9133-9136.
ZHAO Y H,ABRAHAM M H,ZISSIMOS A M. Fast calculation of van der Waals volume as a sum of atomic and bond contributions and its application to drug compounds[J]. J. Org. Chem., 2003,68(19):7368-7373.
刘晋红,张方辉.OLED薄膜干燥剂的制备及其对OLED的影响[J].发光学报, 2017,38(1):76-84. LIU J H,ZHANG F H. Preparation of OLED desiccant film and the impact for OLED[J]. Chin. J. Lumin., 2017,38(1):76-84. (in Chinese)
ZHANG S T,LI W J,YAO L,et al.. Enhanced proportion of radiative excitons in non-doped electro-fluorescence generated from an imidazole derivative with an orthogonal donor-acceptor structure[J]. Chem. Commun., 2013,49(96):11302-11304.
HU J Y,PU Y J,SATOH F,et al.. Bisanthracene-based donor-acceptor-type light-emitting dopants:highly efficient deep-blue emission in organic light-emitting devices[J]. Adv. Funct. Mater., 2014,24(14):2064-2071.
XU H X,SUN P,WANG K X,et al.. Bipolar hosts and non-doped deep-blue emitters (CIEy=0.04) based on phenylcarbazole and 2-(2-phenyl-2H-1,2,4-triazol-3-yl)pyridine groups[J]. J. Mater. Chem. C, 2017,5(18):4455-4462.
0
Views
76
下载量
1
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution