Improving Performance of Polymer Solar Cells by Regulating PbSe Quantum Dots
Device Fabrication and Physics|更新时间:2020-08-12
|
Improving Performance of Polymer Solar Cells by Regulating PbSe Quantum Dots
Chinese Journal of LuminescenceVol. 40, Issue 10, Pages: 1267-1273(2019)
作者机构:
长春工业大学 化学工程学院,吉林 长春,130012
作者简介:
基金信息:
Supported by Scientific Research Foundation of Education Department of Jilin Province(JJKH20191316KJ);National Natural Science Foundation of China(21403016);Key Program for Scicence and Technology Development of Jilin Province(20170204014SF)
ZHANG Liang, SUN Qiang, ZHU Yang-yang etc. Improving Performance of Polymer Solar Cells by Regulating PbSe Quantum Dots[J]. Chinese Journal of Luminescence, 2019,40(10): 1267-1273
ZHANG Liang, SUN Qiang, ZHU Yang-yang etc. Improving Performance of Polymer Solar Cells by Regulating PbSe Quantum Dots[J]. Chinese Journal of Luminescence, 2019,40(10): 1267-1273 DOI: 10.3788/fgxb20194010.1267.
Improving Performance of Polymer Solar Cells by Regulating PbSe Quantum Dots
In order to improve the photoelectric conversion efficiency of polymer solar cells
PbSe quantum dots were doped in the active layer and the effect of the material on the cells was studied. Firstly
PbSe quantum dots were prepared by thermochemical method. The size and crystallinity of PbSe quantum dots were controlled by changing the amount of oleic acid and reaction time. Quantum dots were characterized by transmission electron microscopy (TEM) and X-ray diffraction (XRD)
and the optimum reaction conditions were determined. Then PbSe quantum dots with different mass fractions were doped into polymer solar cells with structure of ITO/ZnO/PTB7:PC
71
BM/MoO
3
/Ag. Through
J-V
performance test and ultraviolet absorption spectrum test
the influence mechanism of PbSe quantum dots on solar cells was analyzed. The experimental results show that when the molar ratio of PbO to OA is 1:2 and the reaction time is 3 min
the quantum dots with uniform size distribution between 3 and 7 nm and good crystallinity can be obtained. The short circuit current density and photoelectric conversion efficiency can be increased by 8.37% and 37.41% by doping 3% into polymer solar cells and the performance of polymer solar cells has been improved effectively.
关键词
Keywords
references
SINGH R P,KUSHWAHA O S. Polymer solar cells:an overview[J]. Macromol. Symp., 2013,327(1):128-149.
LI G,ZHU R,YANG Y. Polymer solar cells[J]. Nat. Photon., 2012,6(3):153-161.
YUAN J,ZHANG Y Q,ZHOU L Y,et al.. Fused benzothiadiazole:a building block for n-type organic acceptor to achieve high-performance organic solar cells[J]. Adv. Mater., 2019,31(17):1807577-1-8.
YIN Y L,ZHANG Y,ZHAO L C. Indaceno-based conjugated polymers for polymer solar cells[J]. Macromol. Rapid Commun., 2018,39(14):1700697.
BEILEY Z M,HOKE E T,NORIEGA R,et al.. Morphology-dependent trap formation in high performance polymer bulk heterojunction solar cells[J]. Adv. Energy Mater., 2011,1(5):954-962.
KO S J,HEO J,LEE B H,et al.. Morphological and optical engineering for high-performance polymer solar cells[J]. ACS Appl. Mater. Interfaces, 2019,11(5):4705-4711.
王丽娟,张伟,秦海涛,等. 溶液加工条件对聚合物体相异质结太阳能电池性能的影响[J]. 液晶与显示, 2013,28(4):521-526. WANG L J,ZHANG W,QIN H T,et al.. Influence of solution-processed conditions on polymer bulk heterojunction solar cell performance[J]. Chin. J. Liq. Crys. Disp., 2013,28(4):521-526. (in Chinese)
赵宇涵,李雪,关海艳,等. 快速热退火处理ZnO电子传输层对聚合物太阳能电池性能的改善[J]. 发光学报, 2017,38(8):1063-1068. ZHAO Y H,LI X,GUAN H Y,et al.. Enhanced performance of polymer solar cells using rapid thermal annealing treated ZnO electron transporting layer[J]. Chin. J. Lumin., 2017,38(8):1063-1068. (in Chinese)
LI W,LIU Z Y,YANG R J,et al.. High performance polymer solar cells employing rhodamines as cathode interfacial layers[J]. ACS Appl. Mater. Interfaces, 2017,9(32):27083-27089.
DANG D F,YU D H,WANG E G. Conjugated donor-acceptor terpolymers toward high-efficiency polymer solar cells[J]. Adv. Mater., 2019,31(22):1807019-1-33.
KUBO R. Electronic properties of metallic fine particle. I[J]. J. Phys. Soc. Japan, 1962,17(6):975-986.
NOZIK A J. Nanoscience and nanostructures for photovoltaics and solar fuels[J]. Nano Lett., 2010,10(8):2735-2741.
KONSTANTATOS G,SARGENT E H. Solution-processed quantum dot photodetectors[J]. Proc. IEEE, 2009,97(10):1666-1683.
耿卫东,郭嘉,唐静,等. 全无机胶体量子点显示技术[J]. 液晶与显示, 2014,29(4):479-484. GENG W D,GUO J,TANG J,et al.. All-inorganic colloidal quantum dots display technology[J]. Chin. J. Liq. Cryst. Disp., 2014,29(4):479-484. (in Chinese)
GHIMIRE S,BIJU V. Relations of exciton dynamics in quantum dots to photoluminescence,lasing,and energy harvesting[J]. J. Photochem. Photobiol. C:Photochem. Rev., 2018,34:137-151.
王丽娟,范思大,张梁,等. Fe3O4纳米粒子对P3HT:PCBM电池的影响[J]. 发光学报, 2018,39(10):1410-1416. WANG L J,FAN S D,ZHANG L,et al.. Effect of Fe3O4 nanoparticles on P3HT:PCBM solar cells[J]. Chin. J. Lumin., 2018,39(10):1410-1416. (in Chinese)
JANAB,GHOSH A,MATITI S,et al.. Size of CdTe quantum dots controls the hole transfer rate in CdTe quantum dots-MEHPPV polymer nanoparticle hybrid[J]. J. Phys. Chem. C, 2016,120(43):25142-25150.
CHEN H,CHAO P J,HAN D B,et al.. Hydroxyl-terminated CuInS2-based quantum dots:potential cathode interfacial modifiers for efficient inverted polymer solar cells[J]. ACS Appl. Mater. Interfaces, 2017,9(8):7362-7367.
CHEN S F,PENG B,LU F,et al.. Scattering or photoluminescence? Major mechanism exploration on performance enhancement in P3HT-based polymer solar cells with NaYF4:2%Er3+,18%Yb 3+ upconverting nanocrystals[J]. Adv. Opt. Mater., 2014,2(5):442-449.
ZHU T,ZHENG L Y,YAO X,et al.. Ultrasensitive solution-processed broadband PbSe photodetectors through photomultiplication effect[J]. ACS Appl. Mater. Interfaces, 2019,11(9):9205-9212.
GRIMALDI G,CRISP R W,TEN BRINCK S,et al.. Hot-electron transfer in quantum-dot heterojunction films[J]. Nat. Commun., 2018,9:2310-1-10.
KAMAT P V. Photovoltaics:capturing hot electrons[J]. Nat. Chem., 2010,2(10):809-810.
HONG J,WANG H,YUE F Y,et al.. Emission kinetics from PbSe quantum dots in glass matrix at high excitation levels[J]. Phys. Status Solidi, 2018,12(4):1800012-1-6.
张冰,张磊,张蕾. PbSe量子点液芯光纤的温度效应[J]. 发光学报, 2017,38(5):623-629. ZHANG B,ZHANG L,ZHANG L. Temperature effect on PbSe quantum dot-doped liquid core fiber[J]. Chin. J. Lumin., 2017,38(5):623-629. (in Chinese)
YU W W,FALKNER J C,SHIH B S,et al.. Preparation and characterization of monodisperse PbSe semiconductor nanocrystals in a noncoordinating solvent[J]. Chem. Mater., 2004,16(17):3318-3322.